Химический способ получения пропана

Содержание
  1. Пропан: способы получения и химические свойства
  2. Гомологический ряд пропана
  3. Строение пропана
  4. Изомерия пропана
  5. Химические свойства пропана
  6. 1. Реакции замещения
  7. 1.1. Галогенирование
  8. 1.2. Нитрование пропана
  9. 2. Дегидрирование пропана
  10. 3. Окисление пропана
  11. 3.1. Полное окисление – горение
  12. Получение пропана
  13. 1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)
  14. 2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)
  15. 3. Гидрирование алкенов и алкинов
  16. 4. Синтез Фишера-Тропша
  17. 5. Получение пропана в промышленности
  18. Пропан, получение, свойства, химические реакции
  19. Пропан, получение, свойства, химические реакции.
  20. Пропан, формула, газ, характеристики:
  21. Физические свойства пропана:
  22. Химические свойства пропана:
  23. Получение пропана. Химические реакции – уравнения получения пропана:
  24. Применение и использование пропана:

Пропан: способы получения и химические свойства

Пропан C3H8 – это предельный углеводород, содержащий три атома углерода в углеродной цепи. Бесцветный газ без вкуса и запаха, нерастворим в воде и не смешивается с ней.

Гомологический ряд пропана

Все алканы — вещества, схожие по физическим и химическим свойствам, и отличающиеся на одну или несколько групп –СН2– друг от друга. Такие вещества называются гомологами, а ряд веществ, являющихся гомологами, называют гомологическим рядом.

Самый первый представитель гомологического ряда алканов – метан CH4. , или Н–СH2–H.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь алкана.

Название алкана Формула алкана
Метан CH4
Этан C2H6
Пропан C3H8
Бутан C4H10
Пентан C5H12
Гексан C6H14
Гептан C7H16
Октан C8H18
Нонан C9H20
Декан C10H22

Общая формула гомологического ряда алканов CnH2n+2.

Первые четыре члена гомологического ряда алканов – газы, C5–C17 – жидкости, начиная с C18 – твердые вещества.

Строение пропана

В молекулах алканов встречаются химические связи C–H и С–С.

Связь C–H ковалентная слабополярная, связь С–С – ковалентная неполярная. Это одинарные σ-связи. Атомы углерода в алканах образуют по четыре σ-связи. Следовательно, гибридизация атомов углерода в молекулах алканов – sp 3 :

При образовании связи С–С происходит перекрывание sp 3 -гибридных орбиталей атомов углерода:

При образовании связи С–H происходит перекрывание sp 3 -гибридной орбитали атома углерода и s-орбитали атома водорода:

Четыре sp 3 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в алканах направлены в пространстве под углом 109 о 28′ друг к другу:

Это соответствует тетраэдрическому строению.

Например, в молекуле пропана C3H8 атомы водорода располагаются в пространстве в вершинах тетраэдров, центрами которых являются атомы углерода. При этом углеродный скелет образует угол, т.е. геометрия молекулы — уголковая или V-образная.

Изомерия пропана

Для пропана не характерно наличие изомеров – ни структурных (изомерия углеродного скелета, положения заместителей), ни пространственных.

Химические свойства пропана

Пропан – предельный углеводород, поэтому он не может вступать в реакции присоединения.

Для пропана характерны реакции:

Разрыв слабо-полярных связей С – Н протекает только по гомолитическому механизму с образованием свободных радикалов.

Читайте также:  Имитация бруса способ крепления имитации

Поэтому для пропана характерны радикальные реакции.

Пропан устойчив к действию сильных окислителей (KMnO4, K2Cr2O7 и др.), не реагирует с концентрированными кислотами, щелочами, бромной водой.

1. Реакции замещения

В молекулах алканов связи С–Н более доступны для атаки другими частицами, чем менее прочные связи С–С.

1.1. Галогенирование

Пропан реагирует с хлором и бромом на свету или при нагревании.

При хлорировании пропана образуется смесь хлорпроизводных.

Например, при хлорировании пропана образуются 1-хлорпропан и 2-хлопропан:

Бромирование протекает более медленно и избирательно.

Избирательность бромирования: сначала замещается атом водорода у третичного атома углерода, затем атом водорода у вторичного атома углерода, и только затем первичный атом.

С третичный–Н > С вторичный–Н > С первичный–Н

Например, при бромировании пропана преимущественно образуется 2-бромпропан:

Хлорпропан может взаимодействовать с хлором и дальше с образованием дихлорпропана, трихлорпропана, тетрахлорпропана и т.д.

1.2. Нитрование пропана

Пропан взаимодействует с разбавленной азотной кислотой по радикальному механизму, при нагревании и под давлением. Атом водорода в пропане замещается на нитрогруппу NO2.

Например. При нитровании пропана образуется преимущественно 2-нитропропан:

2. Дегидрирование пропана

Дегидрирование – это реакция отщепления атомов водорода.

В качестве катализаторов дегидрирования используют никель Ni, платину Pt, палладий Pd, оксиды хрома (III), железа (III), цинка и др.

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, разрываются связи С–Н у соседних атомов углерода и образуются двойные и тройные связи.

Например, п ри дегидрировании пропана образуются пропен (пропилен) или пропин:

3. Окисление пропана

Пропан – слабополярное соединение, поэтому при обычных условиях он не окисляется даже сильными окислителями (перманганат калия, хромат или дихромат калия и др.).

3.1. Полное окисление – горение

Пропан горит с образованием углекислого газа и воды. Реакция горения пропана сопровождается выделением большого количества теплоты.

Уравнение сгорания алканов в общем виде:

При горении пропана в недостатке кислорода может образоваться угарный газ СО или сажа С.

Получение пропана

1. Взаимодействие галогеналканов с металлическим натрием (реакция Вюрца)

Это один из лабораторных способов получения алканов. При этом происходит удвоение углеродного скелета.

При проведении синтеза со смесью разных галогеналканов образуется смесь разных алканов.

Например, при взаимодействии хлорметана и хлорэтана с натрием помимо пропана образуются этан и бутан.

2. Декарбоксилирование солей карбоновых кислот (реакция Дюма)

Реакция Дюма — это взаимодействие солей карбоновых кислот с щелочами при сплавлении.

R–COONa + NaOH R–H + Na2CO3

Декарбоксилирование — это отщепление (элиминирование) молекулы углекислого газа из карбоксильной группы (-COOH) или органической кислоты или карбоксилатной группы (-COOMe) соли органической кислоты.

При взаимодействии бутаноата натрия с гидроксидом натрия при сплавлении образуются пропан и карбонат натрия:

CH3–CH2 – CH2 –COONa + NaOH CH3–CH2 – CH3 + Na2CO3

3. Гидрирование алкенов и алкинов

Пропан можно получить из пропилена или припина:

При гидрировании пропена образуется пропан:

При полном гидрировании пропина также образуется пропан:

4. Синтез Фишера-Тропша

Из синтез-газа (смесь угарного газа и водорода) при определенных условиях (катализатор, температура и давление) можно получить различные углеводороды:

Это промышленный процесс получения алканов.

Из угарного газа и водорода можно получить пропан:

5. Получение пропана в промышленности

В промышленности пропан получают из нефти, каменного угля, природного и попутного газа . При переработке нефти используют ректификацию, крекинг и другие способы.

Источник

Пропан, получение, свойства, химические реакции

Пропан, получение, свойства, химические реакции.

Пропан, C3H8 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.

Пропан, формула, газ, характеристики:

Пропан (лат. propanum) – органическое вещество класса алканов , состоящий из трех атомов углерода и восьми атомов водорода.

Химическая формула пропана C3H8, рациональная формула CH3CH2CH3. Изомеров не имеет.

Пропан – бесцветный газ, без вкуса и запаха. Однако в пропан, используемый в качестве технического газа, могут добавляться одоранты – вещества, имеющие резкий неприятный запах для предупреждения его утечки.

В природе содержится в природном газе , добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе . Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.

Образуется также при крекинге нефтепродуктов ., в т.ч. сланцевой нефти.

Пожаро- и взрывоопасен.

Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).

Пропан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.

Физические свойства пропана:

Наименование параметра: Значение:
Цвет без цвета
Запах без запаха
Вкус без вкуса
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м 3 1,8641
Плотность (при температуре кипения и атмосферном давлении 1 атм.), кг/м 3 585
Температура плавления, °C -187,6
Температура кипения, °C -42,09
Температура самовоспламенения, °C 472
Критическая температура*, К 370
Критическое давление, МПа 4,27
Критический удельный объём, м 3 /кг 0,00444
Взрывоопасные концентрации смеси газа с воздухом, % объёмных от 1,7 до 10,9
Удельная теплота сгорания, МДж/кг 48
Молярная масса, г/моль 44,1

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Химические свойства пропана:

Пропан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.

Химические свойства пропана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:

  1. 1. каталитическое дегидрирование пропана:
  1. 2. галогенирование пропана:

Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы пропана, отрывая у них атом водорода, в результате этого образуется свободный пропил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома :

Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;

CH3-CH2-CH3 + Br· → CH3-CH·-CH3 + HBr; – рост цепи реакции галогенирования;

CH3-CH·-CH3 + Br· → CH3-CHBr-CH3; – обрыв цепи реакции галогенирования.

Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование пропана проходит поэтапно – за один этап замещается не более одного атома водорода.

Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.

  1. 3. нитрование пропана:
  1. 4. окисление (горение) пропана:

При избытке кислорода:

Горит желтым пламенем.

При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (в различном виде, в т.ч. в виде графена , фуллерена и пр.) либо их смесь.

  1. 5. сульфохлорирование пропана:
  1. 6. сульфоокисление пропана:

Получение пропана. Химические реакции – уравнения получения пропана:

Так как пропан в достаточном количестве содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа , ПНГ и нефти при перегонке.

Пропан в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. гидрирования непредельных углеводородов , например, пропена:
  1. 2. восстановления галогеналканов:
  1. 3. взаимодействия галогеналканов с металлическим щелочным металлом , например, натрием (реакция Вюрца):

Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом .

  1. 4. декарбоксилирования масляной кислоты и ее солей:

Применение и использование пропана:

– в качестве топлива в быту для приготовления пищи, транспортных средствах, в отопительных приборах и т.п. Как топливо пропан более удобен, чем метан. Пропан сжижается при комнатной температуре и давлении 12-15 атмосфер, что делает возможным его хранение и транспортировку как в обычных, так и более легких – композитных баллонах ;

– для проведения различных технологических операций, например, газопламенных работ;

– как сырье в химической промышленности для производства других химических веществ, например, растворителей, полипропилена;

– в пищевой промышленности как пищевая добавка E944, используемая в качестве пропеллента;

– как хладагент в холодильниках , холодильных камерах, холодильных установках и системах кондиционирования воздуха . Используется в смеси с изобутаном. В отличие от других хладагентов данная смесь не разрушает озоновый слой.

Примечание: © Фото //www.pexels.com, //pixabay.com

газовая газ редуктор газовый баллон метан пропан этан бутан пропен цена купить реакции 1 4 50 3 какой кислород вещество авто температура кг воздух вода
заправка баллонов пропаном
сколько литров стоимость сгорание уравнение реакций давление смесь расход объем литр пропана
сжиженный пропан

Источник

Читайте также:  Как собрать мегаминкс самый простой способ для начинающих
Оцените статью
Разные способы