- 1.2.4. Классификация полимеров способу получения
- 1.2.5. Классификация полимеров по отношению к нагреванию
- 1.3 Гомополимеры и сополимеры
- Полимеры их классификация
- Классификация по структуре
- Видео
- Классификация по классам соединений
- Где применяются полимеры
- Полимеризация
- Классификация по химическому составу
- Основные характеристики полимеров
- Пищевая промышленность
1.2.4. Классификация полимеров способу получения
1) полимеризационные полимеры (поливинилхлорид, полиэтилен, полипропилен и др.);
2) поликонденсационные полимеры (полиамиды (найлон-6,6), полиэтилентерефталат (лавсан, полиэстер), полиэтиленгликоль, фенопласты и др.);
3) полученные с помощью полимераналогичных превращений (поливиниловый спирт, ацетаты и нитраты целлюлозы, вискоза и др.).
1.2.5. Классификация полимеров по отношению к нагреванию
1) термопластичные полимеры (термопласты). Это полимеры свойства которых при нагревании меняются обратимо. При повышении температуры полимеры такого типа переходят в текучее состояние, из них можно формовать изделия. При охлаждении они затвердевают. При повторном нагревании термопласты сохраняют способность переходить в текучее состояние. Примеры: полиэтилен, полипропилен, полистирол, капрон, лавсан и др.
2) термореактивные полимеры (реактопласты). При нагревании термореактивные полимеры и олигомеры расплавляются. В этом состоянии из них можно формовать изделия. При продолжении нагревания (или ином воздействии) макромолекулы реактопластов вступают в реакции сшивания с образованием сетчатых (пространственных) структур. В результате этого, у полученного сетчатого полимера теряется способность к плавлению и растворению. Реакция сшивания макромолекул называется отверждением реактопласта.
К реактопластам относят фенолформальдегидные смолы (олигомеры), мочевиноформальдегидные смолы, эпоксидные и ненасыщенные полиэфирные смолы и др. Изделия из отвержденных реактопластов характеризуются высокой теплостойкостью, стойкостью к растворителям и агрессивным средам, высокой твердостью.К термореактивным полимерам относят также вулканизующиеся эластомеры — каучуки, имеющие двойные связи в цепи макромолекулы. Переработка каучуков в изделия проводится с участием сшивающего агента — серы или ее соединений. В результате реакции сшивания макромолекул каучука образуется пространственная сетка (вулканизат), нерастворимая и неплавкая при повышении температуры. Данная реакция носит название “вулканизация каучуков”. Полимерную композицию на основе каучука, сшивающего агента (серы) и других компонентов называют резиновой смесью. При вулканизации резиновых смесей (например, путем их нагревания до 150-180 о С) образуется резина – полимер сетчатого строения.
1.3 Гомополимеры и сополимеры
Полимеры, макромолекулы которых состоят из однотипных звеньев, т.е. звеньев одного и того же состава, называют гомополимерами.
Схематично реакцию их получения и строение цепи можно записать так:
n M → … M M M M M M M M …
Примеры гомополимеров: полиэтилен, полипропилен, поливинилхлорид, полистирол и др.
Полимеры, макромолекулы которых состоят из разнотипных звеньев (двух и более типов), носят название сополимеры. Реакцию их получения и строение цепи можно записать следующим образом:
мономеры тройной сополимер
Виды сополимеров. В макромолекулах сополимера остатки мономеров могут располагаться регулярно и нерегулярно.
1) если остатки мономеров в цепи располагаются в определенном порядке, такие сополимеры называют регулярными (чередующимися, альтернатными):
Сополимеры данного вида получить довольно сложно, поэтому они используются редко;
2) если в макромолекулах сополимера остатки мономеров располагаются нерегулярно (по закону случая), то такие сополимеры называют нерегулярными (статистическими):
Эти сополимеры являются наиболее распространенными. Например, сополимер 1,3-бутадиена и стирола:
1,3-бутадиен (бутадиен-стирольный каучук)
стирол сополимер бутадиена и стирола
3) блок-сополимеры. Макромолекулы блок-сополимеров состоят из чередующихся участников полимерной цепи (блоков), построенных из звеньев какого-либо одного типа.
Длина блоков в макромолекуле сополимера может быть различна, но обычно она находится в пределах 50-200 звеньев. Большое практическое распространение получили линейные трехблочные сополимеры типа СБС (стирол-бутадиен-стирол), у которых концевые полистирольные блоки имеют молекулярную массу 15 — 20 тыс., а центральный полибутадиеновый блок обладает молекулярной массой 50 — 70 тыс. Подобные блок-сополимеры обычно называют термоэластопластами Молярное соотношение бутадиен : стирол в термоэластопласте составляет 70 : 30.
4) привитые сополимеры; у сополимеров подобного типа блоки одного из мономеров присоединены к основной цепи макромолекулы, построенной из звеньев другого мономера, в виде больших боковых ответвлений. Таким образом, макромолекулы привитых сополимеров являются разветвленными.
Методы получения полимеров (Из пособия ФХМОСП)
Полимеры синтезируют по реакциям полимеризации, полиприсоединения (ступенчатой полимеризации) и поликонденсации.
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник
Полимеры их классификация
Классификация по структуре
По структуре полимеры делятся на: линейные, разветвленные и пространственные.
Линейные | Разветвленные | Пространственные |
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. |
Целлюлоза, полиэтилен низкого давления, капрон
Химические связи имеются и между цепями, образуя пространственную структуру
Резина, фенолформальдегидные смолы
Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).
Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).
Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).
Видео
Классификация по классам соединений
По классам соединений полимеры делятся на:
Полиолефины — полимеры, образованные из олефинов (алкенов). Пример:
Полидиены — полимеры, образованные из алкадиенов. Пример:
Полиамиды. Пример:
Поликарбонаты. Пример:
Полиуретаны. Пример:
Где применяются полимеры
Область применения полимерных материалов очень широка. Сейчас можно с уверенностью сказать – они используются в промышленности и производстве практически в любой сфере. Благодаря своим качествам полимеры полностью заменили природные материалы, существенно уступающие им по характеристикам. Поэтому стоит рассмотреть свойства полимеров и области их применения.
По классификации материалы можно разделить на:
Качества каждой разновидности определяет область применения полимеров.
Оглядевшись вокруг, мы можем увидеть огромное количество изделий из синтетических материалов. Это детали бытовых приборов, ткани, игрушки, кухонные принадлежности и даже бытовая химия. По сути – это огромный ряд изделий от обычной пластмассовой расчески до стирального порошка.
Такое широкое использование обусловлено низкой стоимостью производства и высокими качественными характеристиками. Изделия прочны, гигиеничны, не содержат вредных для организма человека компонентов и универсальны. Даже обычные капроновые колготки изготовлены из полимерных составляющих. Поэтому полимеры в быту применяются гораздо чаще, чем натуральные материалы. Они существенно превосходят их по качествам и обеспечивают низкую цену изделия.
Примеры:
- пластиковая посуда и упаковка;
- части различных бытовых приборов;
- синтетические ткани;
- игрушки;
- кухонные принадлежности;
- изделия для санузлов.
Любая вещь из пластика или с включением синтетических волокон изготавливается на основе полимеров, так что перечень примеров может быть бесконечным.
Полимеризация
Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.
Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n
Характерные признаки полимеризации.
|
Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.
Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.
Например , схема сополимеризации этилена с пропиленом:
Важнейшие синтетические полимеры
Изображение с портала
Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:
Полимер | Мономер | Характеристики полимера | Применение полимера |
Полиэтилен | Синтетический, линейный, термопластичный, химически стойкий | Упаковка, тара | |
Полипропилен | Пропилен | Синтетический, линейный, термопластичный, химически стойкий | Трубы, упаковка, ткань (нетканый материал) |
Поливинилхлорид | Винилхлорид | Синтетический линейный полимер, т ермопластичный | Натяжные потолки, окна, пленка, трубы, полы, изолента и т.д |
Полистирол | Синтетический линейный полимер, термопластичный | Упаковка, посуда, потолочные панели | |
Полиметилметакрилат Метиловый эфир метакриловой кислоты | Синтетический линейный полимер, т ермопластичный | Очки, корпуса фар и светильников, душевые кабины, мебель и т.д | |
Тефлон (политетрафторэтилен) | Тетрафторэтилен | Синтетический линейный полимер. Термопластичный (t = 260-320 C) Обладает очень высокой химической стойкостью | Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция |
Искусственный каучук Мономер: бутадиен-1,3 (дивинил) | Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Натуральный каучук | Природный, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Хлоропреновый каучук | Синтетический, линейный, эластомер, содержит двойные связи | Резина, изоляция, различные материалы, ракетное топливо | |
Бутадиен-стирольный каучук Мономеры: бутадиен-1,3 и стирол | Синтетический, эластомер | Резина, изоляция, различные материалы, ракетное топливо | |
Полиакрилонитрил | Акрилонитрил | Синтетический, линейный | Волокна, пластмассы |
Классификация по химическому составу
По составу полимеры делятся на:
- Гомоцепные (главная цепь состоит из атомов одной природы, например: полиэтилен, поливинилхлорид и др.);
- Гетероцепные (встречаются несколько атомов различной природы, н-р: полиэтиленоксид и др.);
- Гомополимеры (макромолекулы содержат одинаковые структурные звенья -[-А-]-n);
- Гетерополимеры (состоят из разных остатков мономеров). Такие полимеры называют также сополимеры. Различают сополимеры статистические (беспорядочно чередующиеся звенья), привитые (главная цепь — из одного мономера, а боковые цепи — длинные цепочки из другого мономера) и блоксополимеры (состоят из блоков макроцепей).
Основные характеристики полимеров
— Химический состав— Молекулярная масса одного химического звена и всей молекулы— Степень полимеризации (количество мономеров в молекуле)— Молекулярно-массовое распределение (показывает однородность длины молекул)— Степень разветвленности и гибкости молекул— Стереорегулярность (отражает однородность составляющих молекулу стереоизомеров или их равномерное чередование)
Пищевая промышленность
В пищевой промышленности полимерные материалы используются для изготовления тары и упаковки. Могут иметь форму твердых пластиков или пленок. Основное требование – полное соответствие санитарно-эпидемиологическим нормам. Не обойтись без полимеров и в пищевом машиностроении. Их применение позволяет создавать поверхности с минимальной адгезией, что важно при транспортировке зерна и других сыпучих продуктов. Также антиадгезионные покрытия необходимы в линиях выпечки хлеба и производства полуфабрикатов.
Полимеры применяются в различных отраслях деятельности человека, что обусловливает их высокую востребованность. Обойтись без них невозможно. Натуральные материалы не могут обеспечить ряда характеристик, необходимых для соответствия конкретным условиям использования.
Источник