- Гравиметрический метод анализа способы
- N этапа Содержание этапа анализа
- МЕХАНИЗМ ОБРАЗОВАНИЯ ОСАДКА И УСЛОВИЯ ОСАЖДЕНИЯ
- Условия осаждения кристаллических и аморфных осадков
- Характер осадка
- ОСАЖДЕННАЯ И ГРАВИМЕТРИЧЕСКАЯ ФОРМЫ.
- ТРЕБОВАНИЯ К НИМ.
- Из формулы m(Fе2О3) = 3/2 (m(Fе3О4) ∙ М(Fе2О3)) / М(Fе3О4)
- ПОГРЕШНОСТИ ГРАВИМЕТРИИ
- Методические погрешности гравиметрии
- Гравиметри-ческая операция
- Абсолютная погрешность
- Соосаждение посторонних ионов
Гравиметрический метод анализа способы
Количественный анализ. Классификация методов. Гравиметрический анализ. Осажденная и гравиметрическая формы осадков. Расчеты в гравиметрическом анализе.
Количественный анализ предназначен для установления количественного состава компонентов в анализируемой пробе. Ему предшествует качественный анализ, устанавливающий, какие компоненты (элементы, ионы, молекулы) присутствуют в анализируемой пробе.
Количественный анализ бывает трех видов: полный, частичный, общий. При полном количественном анализе устанавливается полный количественный состав всех компонентов, присутствующих в анализируемой пробе. Например, для полного количественного анализа крови необходимо определить содержание 12 компонентов: натрия, калия, кальция, глюкозы, билирубина и т. д. Полный анализ требует больших затрат времени и труда.
При выполнении частичного анализа определяется содержание лишь за-
данных компонентов. Общий анализ устанавливает содержание каждого элемента в анализируемом образце независимо от того, в состав каких соединений они входят. Такой анализ обычно называют элементным.
КЛАССИФИКАЦИЯ МЕТОДОВ КОЛИЧЕСТВЕННОГО АНАЛИЗА
Методы количественного анализа можно разделить на три большие группы: химические, физические, физико-химические.
Химические методы основаны на использовании количественно протекающих, различных по типу химических реакций: обменных, осадительных, окислительно-восстановительных и реакций комплексообразования. К химическим относятся гравиметрический и титриметрический (объемный) методы анализа.
Гравиметрический метод анализа основан на измерении массы определяeмoгo компонента после его выделения в виде гравиметрической формы. Метод характеризуется высокой точностью, но длителен и трудоемок. В фармацевтическом анализе его применяют в основном для определения влажности и зольности лекарственных препаратов.
Титриметрический метод анализа основан на введении в точно измеренный объем раствора анализируемого вещества точно отмеренного объема раствора известной концентрации — титранта. Титрант вводится до тех пор, пока анализируемое вещество полностью прореагирует с ним. Этот момент называют конечной точкой титрования и устанавливают с помощью специaльныx химических индикаторов или инструментальными методами. Среди
химических методов количественного анализа это — самый распространенный метод.
Химические методы анализа, хотя и являются в настоящее время основными в химических лабораториях, во многих случаях не отвечают возросшим требованиям к анализу, таким как высокая чувствительность, экспрессность, селективность, автоматизация и др. Этих недостатков лишены инструментальные методы анализа, которые можно разделить на три большие группы: оптические, электрохимические, хроматографические.
Гравиметрический метод основан на точном измерении массы вещества известного состава, химически связанного с определяемым компонентом и выделенного в виде соединения или в виде простого вещества. Классическое название метода — весовой анализ. Гравиметрический анализ основан на законе сохранения массы вещества при химических превращениях и является наиболее точным из химических методов анализа: предел обнаружения составляет 0,10 %; правильность (относительная ошибка метода) ±0,2 %.
В гравиметрическом анализе используют методы осаждения, отгонки (прямой и косвенной), выделения, термогравиметрию, электрогравиметрию.
В методе осаждения определяемый компонент вступает в химическую реакцию с реагентом, образуя малорастворимое соединение. После проведения ряда аналитических операций (схема 1.1) твердый осадок известного состава взвешивают и проводят необходимые вычисления.
Последовательность аналитических операций в гравиметрическом методе осаждения
N этапа Содержание этапа анализа
1Расчет массы навески анализируемого вещества и ее взвешивание
2 Растворение навески
3 Создание условий осаждения
4 Осаждение (получение осажденной формы)
5Отделение осадка фильтрованием
6 Промывание осадка
7 Получение гравиметрической формы (высушивание, прокаливание до постоянной массы)
8 Взвешивание гравиметрической формы
9 Расчет результатов анализа
Методы отгонки могут быть прямые и косвенные. В методе прямой отгонки определяемый компонент выделяют из пробы в виде газообразного продукта, улавливают и затем определяют его массу. В методах косвенной отгонки массу газообразного продукта определяют по разности масс анализируемого компонента до и после термической обработки. В практике фармацевтического анализа этот метод широко применяется при опреде-лении влажности лекарственных препаратов, растительного сырья. Для некоторых лекарственных препаратов определение потери массы ∆m при высушивании (температуре высушивания t суш ) является одним из обязательных фармакопейных тестов, например: анальгин — t суш = 100. 105˚С, Δm суш = 100. 105 ˚с, Δm суш = 100. 105 ˚, Δ m
В термогравиметрическом анализе фиксируют изменение массы вещества в процессе нагревания, что позволяет судить о про исходящих превращениях и установить состав образующихся промежуточных продуктов. Термогравиметрический анализ осуществляют при помощи приборов дериватографов. В ходе эксперимента фиксируют изменение массы анализируемого образца (ось ординат) в зависимости от времени или температуры (ось абсцисс) и представляют в виде термогравиметрической кривой — термоrравиграммы. Термогравиметрия широко используется для исследования изменения состава вещества и выбора условий высушивания или прокаливания осадков.
Электрогравиметрический анализ основан на электролитическом выделении металлов и взвешивании полученного на электроде осадка. Основным физическим условием электpoлитичecкoгo разделения металлов является определенное напряжение, при котором осаждаются одни и не выделяются другие металлы.
В аналитической практике наиболее широкое применение находит грави-
метрический метод осаждения, который и будет рассмотрен более подробно.
МЕХАНИЗМ ОБРАЗОВАНИЯ ОСАДКА И УСЛОВИЯ ОСАЖДЕНИЯ
Образование осадка происходит в том случае, когда произведение концентраций ионов, входящих в его состав, превышает величину произведения растворимости ПР (KA) малорастворимого электролита:
К + + Аˉ ↔ КА; [К + ] [Аˉ] > ПР (КA) ,
т. е. когда возникает местное (относительное) пересыщение раствора, которое рассчитывают по формуле:
где Q — концентрация растворенного вещества в какой-либо момент времени, моль/см 3 ; S — растворимость вещества в момент равновесия, моль/см 3 В этом месте появляется зародыш будущего кристалла (процесс зародышеобра-зования). Для этого требуется определенное время, называемое индукционным периодом. При дальнейшем прибавлении осадителя более вероятным становится процесс роста кристаллов, а не дальнейшее образование центров кристаллизации, которые соединяются в более крупные агрегаты, состоящие из десятков и сотен молекул (процесс агрегации). Размер частиц при этом увеличивается, и более крупные агрегаты под действием силы тяжести выпадают в осадок. На этой стадии отдельные частицы, будучи диполями, ориентируются по отношению друг к другу так, что их противоположно заряженные стороны сближаются (процесс ориентации). Если скорость ориентации больше скорости агрегации, то образуется правильная кристаллическая решетка, если же наоборот, выпадает аморфный осадок. Чем меньше растворимость вещества, тем быстрее образуется осадок и мельче кристаллы. Одни и те же малорастворимые вещества могут быть выделены как в кристаллическом, так и в аморфном состоянии, что определяется условиями осаждения.
Исходя из понятия относительного пересыщения раствора, следует, что чем ниже растворимость осадка S и чем выше концентрация реагирующих веществ Q, тем больше образуется зародышей и тем больше скорость агрегации. И наоборот: чем меньше разность (Q – S), то есть, чем выше растворимость осадка и ниже концентрация осаждаемого вещества, тем выше скорость ориентации. Следовательно, для получения крупных кристаллов, которые можно легко отфильтровать и промыть, необходимо проводить осаждение из разбавленных растворов медленным прибавлением осадителя и при нагревании (табл. 1.1).
Условия осаждения кристаллических и аморфных осадков
Влияющий фактор
Характер осадка
кристаллический
аморфный
Концентрация растворов вещества и осадителя
К разбавленному раствору исследуемого вещества прибавляют разбавленный раствор осадителя
К концентрированному раствору исследуемого вещества прибавляют концентрированный раствор осадителя
Скорость осаждения
Раствор осадителя прибавляют по каплям
Раствор осадителя прибавляют быстро
Температура
Осаждение ведут из горячих растворов (70 — 80˚С) горячим раствором осадителя
Осаждение ведут из горячих растворов (70 — 80˚С)
Смешивание
Осаждение производят при непрерывном перемешивании
Присутствие посторонних веществ
Добавляют вещества, повышающие растворимость (обычно сильные кислоты)
Добавляют электролиты-коагулянты
Время осаждения
Длительно выдерживают осадок в маточном растворе для «созревания» («старения»)
Фильтруют сразу после осаждения
Чистота кристаллических осадков. Удельная поверхность кристаллических осадков (плошадь осадка, отнесенная к единице массы, см 2 /г) обычно мала, поэтому соосаждение за счет адсорбции незначительно. Однако другие виды соосаждения, связанные с загрязнением внутри кристалла, могут привести к ошибкам.
Известны два вида соосаждения в кристаллических осадках:
1) инклюзия — примеси в виде индивидуальных ионов или молекул гомогенно распределены по всему кристаллу;
2) окклюзuя — неравномерное распределение многочисленных ионов или молекул примеси, попавших в кристалл из-за несовершенства кристаллической решетки.
Эффективным способом уменьшения окклюзии является «старение» («созревание») осадка, в ходе которого происходит самопроизвольный рост более крупных кристаллов за счет растворения мелких частиц, совершенствуется кристаллическая структура осадка, сокращается его удельная поверхность, вследствие чего десорбируются и переходят в раствор примеси поглощенных ранее веществ. Время «созревания» осадка можно сократить, нагревая раствор с осадком.
Чистота аморфных осадков существенно уменьшается в результате процесса адсорбции, так как аморфный осадок состоит из частиц с неупорядоченной структурой, образующих рыхлую пористую массу с большой поверхностью. Наиболее эффективным способом уменьшения в результате процесса адсорбции является переосаждение. В этом случае отфильтрованный осадок растворяют и снова осаждают. Переосаждение существенно удлиняет анализ, но оно неизбежно для гидратированных железа ( III ) и алюминия оксидов, цинка и марганца гидроксидов и т. п. Процессом, обратным коагуляции аморфного осадка, является его пептизация – явление, в результате которого коагулированный коллоид возвращается в исходное дисперсное состояние. Пептизация часто наблюдается при промывании аморфных осадков дистиллированной водой. Эта ошибка устраняeтcя при правильном выборе промывной жидкости для аморфного осадка.
ОСАЖДЕННАЯ И ГРАВИМЕТРИЧЕСКАЯ ФОРМЫ.
ТРЕБОВАНИЯ К НИМ.
В гравиметрическом методе осаждения существуют понятия осажденной
и гравиметрической форм вещества. Осажденной формой называют соединение, в виде которого определяемый компонент осаждается из раствора. Гравиметрической (весовой) формой называют соединение, которое взвешивают. Иначе ее можно определить как осажденную форму после соответствующей аналитической обработки осадка. Представим схемы гравиметрического определения ионов SO4 2 — , Fe 3+ , Мg 2+
определяемый осадитель осажденная гравиметрическая
ион форма форма
определяемый осадитель осажденная гравиметрическая
ион форма форма
Mg 2+ + НРО4 2 — + NH4∙ H 2 O ↔ Mg NH4 P04↓ + H 2 O → Mg2 P2 O7 определ. осадитель осажденная форма гравиметрич. форма
Из приведенных примеров видно, что не всегда гравиметрическая форма совпадает с осажденной формой вещества. Различны и требования, предъявляемые к ним.
Осажденная форма должна быть:
· достаточно малорастворимой, чтобы обеспечить практически полное
выделение определяемого вещества из раствора. В случае осаждения
бинарных электролитов ( AgCl; BaS04; СаС2О4 и т. п.) достигается
практически полное осаждение, так как произведение растворимости этих
осадков меньше, чем 10 — 8 ;
· полученный осадок должен быть чистым и легко фильтрующимся (что определяет преимущества кристаллических осадков);
· осажденная форма должна легко переходить в гравиметрическую форму.
После фильтрования и промывания осажденной формы ее высушивают или прокаливают до тех пор, пока масса осадка не станет постоянной, что подтверждает полноту превращения осажденной формы в гравиметрическую и указывает на полноту удаления летучих примесей. Осадки, полученные при осаждении определяемого компонента органическим реагентом (диацетилдиоксимом, 8-оксихинолином, α-нитрозо-β-нафтолом и т. д.), обычно высушивают. Осадки неорганических соединений, как правило, прокаливают
Основными требованиями к гравиметрической форме являются:
· точное соответствие ее состава определенной химической формуле;
· химическая устойчивость в достаточно широком интервале температур, отсутствие гигроскопичности;
· как можно большая молекулярная масса с наименьшим содержанием
в ней определяемого компонента для уменьшения влияния погрешностей
при взвешивании на результат анализа.
В ГРАВИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА
Гравиметрический анализ включает два экспериментальных измерения: определение массы навески m н анализируемого вещества и массы продукта известного состава, полученного из этой навески, то есть массы гравиметрической формы m гр.ф анализируемого вещества.
На основании этих данных несложно вычислить массовую процентную долю w, % определяемого компонента в навеске:
где F — гравиметрический фактор (фактор пересчета, аналитический множитель) рассчитывают как отношение молекулярной массы определяемого компонента к молекулярной массе гравиметрической формы с учетом стехиометрических коэффициентов.
Значение гравиметрических факторов, рассчитанное с высокой точностью, приводится в справочной литературе.
Пример 1 . Сколько граммов Fе2О3 можно получить из 1,63 г Fе3О4? Рассчитайте гравиметрический фактор.
Р е ш е н и е. Необходимо допустить, что Fе3О4 количественно превращается в Fе2О3 и для этого имеется достаточное количество кислорода:
Из каждого моля Fе3О4 получается 3/2 моля Fе2О3. Таким образом, число молей Fе2О3 больше, чем число молей Fе3О4, в 3/2 раза, то есть:
где n — число молей определяемого компонента, из которого получается один моль гравиметрической формы; m — масса вещества, г; М — молярная масса вещества, г/моль.
Из формулы m(Fе2О3) = 3/2 (m(Fе3О4) ∙ М(Fе2О3)) / М(Fе3О4)
и подставляем в нее численные значения:
m(Fе2О3) = 1,63 ∙(3 ∙ 159,7) / (2 ∙ 231,5) = 1,687 ≈ 1,69 г.
Гравиметрический фактор F равен:
Следовательно, в общем случае гравиметрический фактор определяют по формуле:
где а и b — небольшие целые числа, на которые нужно умножить молекулярные массы, чтобы число молей в числителе и знаменателе было химически эквивалентно.
Однако не во всех случаях эти расчеты применимы. При косвенном определении железа в Fе2(SО4)3, которое заключается в осаждении и взвешивании BaSО4 (гравиметрическая форма), при расчете аналитического фактора в числителе и знаменателе формулы нет общего элемента. Здесь необходим другой способ выражения химической эквивалентности между этими величинами:
Гравиметрический фактор для массовой процентной доли железа будет выражаться:
Пример 2. Раствор препарата Nа3РО4 ( m н = 0,7030 г) осадили в виде MgNН4РО4∙ 6Н2О. После фильтрования и промывания осадок прокалили при 1000 ˚С. Масса полученного осадка Mg2P2О7 составила 0.4320 г. Рассчитайте массовую процентную долю фосфора в навеске
w, %(Р) = 0,4320 ∙ 0,2782 ∙ 100 / 0,7030 = 17,10 %.
Пример 3. При прокаливании загрязненного препарата натрия оксалата m н = 1,3906 г получили остаток массой m гр.ф = 1,1436 г. Определите степень чистоты образца. t
Ре ш е н и е. Следует допустить, что разница между исходной и конечной массами соответствует потере углерода оксида при прокаливании. Анализ основан на измерении этой величины:
w, %(Na2C2O4) = (1 , 3906 – 1 , 1436) ∙ 4 , 784 ∙ 100 / 1 , 3906 = 84 , 97 %.
ВЫБОР МАССЫ НАВЕСКИ В ГРАВИМЕТРИИ
Как известно, точность анализа зависит как от массы навески, так и от массы гравиметрической формы, получаемой из нее. Если навеска будет взята с большой точностью, а полученная из нее гравиметрическая форма будет малой величиной, измеренной с большой погрешностью, то весь анализ будет выполнен с ошибкой, допущенной при взвешивании гравиметрической формы. Поэтому должна быть взята такая навеска, чтобы при ее взвешивании и при взвешивании полученной из нее гравиметрической формы ошибка не превышала ± 0,2 %. Для этого необходимо определить минимальную массу, которую еще можно взвесить с точностью ± 0,2 % на аналитических весах с абсолютной ошибкой взвешивания ± 0,0001 г, а минимальная ошибка, учитывая возможный разброс (±), в этом случае будет равной 2 ∙ (±0,000 1) = ±0,0002 г.
Следовательно, такой минимальной массой m min является 0,1 г. При величине, меньшей чем 0,1 г, ошибка превысит 0,2 %. При расчете массы навески в гравиметрическом анализе масса гравиметрической формы компонента приравнивается к минимальной массе вещества:
Если величина массы навески, рассчитанная по указанной формуле, окажется менее 0,1 г, то навеску следует увеличить до 0,1 г. Чаще всего массу исходной навески указывают в методике анализа или же для объемных аморфных осадков массу навески берут около 0,1, а для кристаллических от 0,1 до 0,5 г.
Расчет количества осадителя проводят с учетом возможного содержания определяемого компонента в анализируемой пробе. Для полноты выделения осадка применяют умеренный избыток осадителя. Если осадитель летуч (например, раствор хлороводородной кислоты), берут двух-, трехкратный избыток, который впоследствии удаляют при нагревании осадка. Если осадитель нелетуч (растворы бария хлорида, аммония оксалата, серебра нитрата и т. п.), достаточно его полуторакратного избытка.
АНАЛИТИЧЕСКИЕ ВЕСЫ. ПРАВИЛА ОБРАЩЕНИЯ С НИМИ
Аналитические весы — это точный физический прибор, пользование которым допускается при строгом соблюдении правил, обеспечивающих необходимую воспроизводимость и точность взвешивания.
Правила обращения с аналитическими весами включают следующие основные требования:
1. Весы должны быть установлены на жестко закрепленной поверхности,
зaщищающей их от различных потрясений, и в специально оборудованном помещении — весовой комнате.
2. Недопустимы резкие колебания температуры, действие прямых солнечных лучей, а также воздействие на аналитические весы химических веществ.
3. Предельно допустимая нагрузка аналитических весов должна быть не более 200 г.
4. При взвешивании предметов на аналитических весах необходимо, чтобы они имели температуру весовой комнаты.
5. Взвешиваемое вещество помещают на левую чашку весов в специальной таре (бюксы, тигли, часовое стекло). Гири аналитического разновеса помещают на правую чашку весов.
6. Взвешиваемые предметы и гири вносят через боковые дверцы весов (шторки). Взвешивание производят только при закрытых дверцах весов.
7. Гири аналитического разновеса берут только специально предназначенным пинцетом. Все операции со сменой разновеса производят при полном арретировании весов.
8. До и после каждого взвешивания необходимо проверять нулевую точку весов.
9. Во избежание перекоса чашек весов гири и взвешиваемые предметы помещают в центр чашек.
10. Запись результатов взвешивания проводят по пустым гнездам аналитического разновеса и по данным барабанов с десятыми и сотыми долями грамма. Третий и четвертый знаки после запятой снимают со светящегося табло.
11. По окончании взвешивания необходимо убедиться, что весы арретированы, полностью разгружены и дверцы футляра плотно закрыты.
12. Для уменьшения ошибки взвешивания необходимо пользоваться аналитическим разновесом, предназначенным для строго определенных аналитических весов.
Следует отметить, что даже при соблюдении всех упомянутых правил
могут возникать ошибки взвешивания, зависящие от различных причин:
· вызванные неравноплечестью коромысла весов;
· за счет изменения массы тела в процессе взвешивания;
· за счет взвешивания в воздухе, а не в вакууме;
· вызванные несоответствием массы гирь (разновесов) их номинальной
ПРИМЕНЕНИЕ ГРАВИМЕТРИЧЕСКОГО МЕТОДА АНАЛИЗА
Иногда в основу гравиметрических определений положено восстановление определяемого компонента до элемента, который служит гравиметрической формой.
Для гравиметрического определения неорганических веществ предложен ряд органических реагентов, которые, как правило, обладают большей селективностью. Известны два класса органических реагентов. Первые образуют малорастворимые комплексные (координационные) соединения и содержат не менее двух функциональных групп, имеющих пару неподеленных электронов. Еще их называют хелатообразующими реагентами, например 8-оксихинолин осаждает более двадцати катионов:
Растворимость оксихинолятов металлов изменяется в широких пределах в зависимости от природы катиона, значения рН среды.
В 1885 году бьл предложен l-нитрозо-2-нафтол — один из первых селективных органических реагентов, который широко используют для определения кобальта в присутствии никеля, а также для определения ионов висмута(3), хрома (III), ртути (II), олова (IV) и т. п.:
Диацетилдиоксим (диметилглиоксим) отличается высокой селективностью, и его широко используют для гравиметрического определения малых концентраций никеля:
ПОГРЕШНОСТИ ГРАВИМЕТРИИ
Гравиметрический метод анализа дает наиболее правильный результат, и, несмотря на длительность и трудоемкость, его очень часто применяют как проверочный метод в арбитражных анализах. Систематические методические ошибки в гравиметрии могут быть учтены и уменьшены в ходе выполнения соответствующих операций ( табл. 1.2).
Методические погрешности гравиметрии
Гравиметри-ческая операция
Абсолютная погрешность
положительная (завышенный результат)
отрицательная (заниженный результат)
а) природа осадителя
б) количество осадителя
Нелетучий, неспецифический осадитель
Небольшой избыток осадителя, соосаждение посторонних ионов
Высокая растворимость осаждаемой формы, коллоидообразование
Недостаток осадителя. Слишком большой избыток осадителя, повышение растворимости осадка в результате комплексообразования или солевого эффекта
Осаждение
Соосаждение посторонних ионов
Недостаточное время созревания (кристаллические осадки). Коллоидообразование (аморфные осадки)
Фильтрование
________
Неправильный выбор фильтра – прохождение частиц осадка через фильтр
Промывание
Промывание нелетучей промывной жидкостью
Избыток промывной жидкости: пептизация аморфного осадка; гидролиз кристаллического осадка. Потери в результате растворимости
Получение гравиметри-ческой формы
Температура прокаливания: получение соединения другого состава, гигроскопичность, поглощение СО2 из воздуха
Превышение температуры высушивания для осадков органической природы. Превышение температуры прокаливания (получения соединения другого химического состава)
Правильность метода объясняется малой систематической ошибкой измерений, связанной с точностью взвешивания на аналитических весах:
где Sa – точность взвешивания на аналитических весах ( 0,0002 г для весов АДВ – 200; 0,00005 г для полумикровесов и т.д.); а – навеска анализи-руемого вещества, г; т — масса гравиметрической формы, г; п — количество прокаливаний или высушиваний для получения постоянной массы.
Анализ приведенных данных показывает, что выявить вид ошибки можно при рассмотрении методики определения с учетом механизма образования осадка, свойств веществ, используемых и получающихся в ходе анализа.
В настоящее время значение гравиметрических методов анализа несколько уменьшилось, однако не следует забывать, что, имея достоинства и недостатки, гравиметрический анализ является оптимальным для решения достаточно большого количества аналитических задач.
Источник