График линейной функции способ

График линейной функции (ЕГЭ 2022)

Чтобы понять то, что здесь будет написано, тебе нужно хорошо знать, что такое линейная функция.

Начнем с небольшой проверки:

Если хоть один вопрос вызвал затруднения, прочти тему «Линейная функция».

Приступим к покорению линий и графиков!

График линейной функции — коротко о главном

График линейной функции – прямая линия. Прямую можно провести через две точки.

Чтобы построить график линейной функции вида y=kx+b, нужно:

  • вычислить координаты любых двух точек (взять любые два значения аргумента x и вычислить соответствующие два значения y,
  • для каждой пары ( x;y ) найти точку в системе координат, и провести прямую через эти две точки.

Рассмотрим пример для функции \( y=2x+1\):

Проще всего найти функцию, если аргумент: \( x=0:y\left( 0 \right)=2\cdot 0+1=1\).

Итак, первая точка имеет координаты \( \left( 0;1 \right)\).

Теперь возьмем любое другое число в качестве \( x\), например, \( x=1:y\left( 1 \right)=2\cdot 1+1=3\).

Вторая точка имеет координаты \( \left( 1;3 \right)\).

Угловой коэффициент \( \displaystyle k\) – это тангенс угла наклона прямой.

Для его нахождения выберем две точки \( \displaystyle A\) и \( \displaystyle B\) на графике и построим прямоугольный треугольник с гипотенузой \( \displaystyle AB\)

\( \displaystyle k=tg\alpha =\frac=\frac<2><1>=2\)

Построение графика линейной функции

Итак, ты уже умеешь обращаться с линейной функцией, анализировать ее график и строить его по точкам. Кстати, сколько нужно точек, чтобы построить график линейной функции?

Скажу сразу, эта тема настолько простая, что много нового ты здесь не выучишь. Но ты научишься не теряться во всяких нестандартных ситуациях.

Итак, дамы и господа, линейная функция:

Построение графика линейной функции: ты берешь два каких-либо икса, (например, \( \displaystyle 0\) и \( \displaystyle 1\)), подставляешь их в формулу, находишь соответствующие игреки.

Затем отмечаешь эти две точки на координатной плоскости, прикладываешь линейку, и график готов. Просто и быстро, и ничего выдумывать не надо.

Но бывает, что функция задана по-другому, например, неявно. Сейчас разберем, как быстро справляться с такими ситуациями.

Пример неявно заданной линейной функции

Постройте график уравнения \( \displaystyle 2y+3x=6\).

Ну а что тут сложного? Чтобы произвести построение графика линейной функции выражаем y и строим по точкам.

Это да, но можно сделать проще и интересней!

Выясним, в какой точке эта прямая будет пересекать ось \( \displaystyle Ox\).

Что характерно для этой точке? Правильно, \( \displaystyle y=0\). Так и пишем:

\( \displaystyle 2\cdot 0+3x=6\text< >\Rightarrow \text< >x=2\)

А теперь проделаем то же самое с другой осью: в какой точке график пересекает ось \( \displaystyle Oy\)?

\( \displaystyle x=0\text< >\Rightarrow \text< >2y+3\cdot 0=6\text< >\Rightarrow \text< >y=3\)

Бум! Вот и они – две точки графика. Осталось только приложить линейку:

Согласись, это было быстро и просто!

А теперь сам:

Ладно, а как еще можно задать функцию?

Ну, например словесно:

Прямая проходит через точку \( \displaystyle A\left( 2;3 \right)\), а ее угловой коэффициент равен \( \displaystyle 0,75\).

Ну что же, вспоминаем: что такое угловой коэффициент?

Что такое угловой коэффициент

Это, с одной стороны, коэффициент при \( \displaystyle x\), а с другой – это тангенс угла между прямой и осью \( \displaystyle Ox\).

Вот это мы и используем когда делаем построение графика линейной функции: ставим точку \( \displaystyle A\), и рисуем прямоугольный треугольник так, что один его катет параллелен оси \( \displaystyle Ox\), а другой – перпендикулярен.

Читайте также:  Как вычислить площадь земельного участка аналитическим способом

При этом второй катет должен быть ровно в \( \displaystyle 0,75\) раз больше первого.

Очень удобно в этом случае, чтобы первый катет был равен \( \displaystyle 4\), тогда второй будет равен \( \displaystyle 3\):

4 примера построения графика линейных функций

Пример №1

Прямая, уравнение которой имеет вид \( y=-2x+b\) (\( b\) неизвестно), проходит через точку \( M\left( 1;2 \right)\). Постройте ее.

Должно получиться вот так:

Пример №2

Произведи построение графика линейной функции и найди уравнение прямой, проходящей через точку \( A\left( 3;1 \right)\) и параллельной прямой \( y=-1,5x+1\).

Строить график прямой \( y=-1,5x+1\) нельзя.

О, это что-то новенькое. Про параллельность прямых мы еще не учили.

Но как обычно, все просто. Нарисуем несколько параллельных прямых на координатной плоскости:

Что у них общего? Вообще, какие параметры важны для графиков? Конечно же, коэффициенты \( k\) и \( b\).

И сразу становится ясно: раз \( k\) отвечает за наклон, а наклон у них одинаковый (это же параллельные прямые, а ось \( Ox\) – секущая), значит, у них одинаковый коэффициент \( k\)!

Вернемся к задаче. Напомню условие:

Произведи построение графика линейной функции и найди уравнение прямой, проходящей через точку \( A\left( 3;1 \right)\) и параллельной прямой \( y=-1,5x+1\).

Итак, угловой коэффициент нашей прямой \( y=-1,5x+1\) равен угловому коэффициенту прямой , то есть \( -1,5\). Теперь задача становится точь в точь как мы решали до этого:

Источник

Линейная функция (ЕГЭ 2022)

Зависимость одной величины от другой математики называют функций одной величины от другой.

Количество денег — это функция вашей зарплаты (иногда говорят «от зарплаты»).

Вес — это функция от съеденных круассанов. Чем меньше съел, тем меньше весишь.

Расстояние — это функция времени. Чем дольше ты будешь идти, тем больше пройдешь.

Ну а теперь перейдем к одному из видов функций – линейной функции.

Линейная функция — коротко о главном

Линейная функция –это функция вида \( y=kx+b\), где \( k\) и \( b\) ­– любые числа (коэффициенты).

Рассмотрим, как коэффициенты влияют на месторасположение графика:

  • \( k\) — отвечает за угол наклона графика (\( \displaystyle k=tg\alpha \))
  • \( \displaystyle b\) — точка пересечения с \( \displaystyle Oy\)

Общие варианты представлены на рисунке:

Линейная функция

Но сначала официальное определение «Функции» – теперь ты его поймешь. Держи в уме: деньги – зарплата, вес – круассаны, расстояние – время.

Функция – это правило, по которому каждому элементу одного множества (аргументу) ставится в соответствие некоторый (единственный!) элемент другого множества (множества значений функции).

То есть, если у тебя есть функция \( y=f\left( x \right)\), это значит что каждому допустимому значению переменной \( x\) (которую называют «аргументом») соответствует одно значение переменной \( y\) (называемой «функцией»).

Что значит «допустимому»?

Все дело в понятии «область определения»: для некоторых функций не все аргументы «одинаково полезны» — не все можно подставить в зависимость.

Например, для функции \( y=\sqrt\) отрицательные значения аргумента \( x\) – недопустимы.

Ну и вернемся, наконец, к теме данной статьи.

Линейной называется функция вида \( y=kx+b\), где \( k\) и \( b\) ­– любые числа (они называются коэффициентами).

Другими словами, линейная функция – это такая зависимость, что функция прямо пропорциональна аргументу.

Как думаешь, почему она называется линейной?

Все просто: потому что графиком этой функции является прямая линия. Но об этом чуть позже.

Как уже говорилось в теме «Функции», важнейшими понятиями, связанными с любой функцией, являются ее область определения \( D\left( y \right)\) и область значений \( E\left( y \right)\).

Область определения линейной функции

Какими могут быть значения аргумента линейной функции \( y=kx+b\)? Правильно, любыми. Это значит, что область определения – все действительные числа:

\( D\left( y \right)=\mathbb\)

или \( D\left( y \right)=\left( -\infty ;+\infty \right)\).

Читайте также:  Металлографический способ печати банкнот

А множество значений?

Область значений линейной функции

Тут тоже все просто: поскольку функция прямо пропорциональна аргументу, то чем больше аргумент \( x\), тем больше значение функции \( y\).

Значит, \( y\) так же как и \( x\) может принимать все возможные значения, то есть \( E\left( y \right)=\mathbb\), верно?

Верно, да не всегда. Есть такие линейные функции, которые не могут принимать любые значения. Как думаешь, в каком случае возникают ограничения?

Вспомним формулу: \( y=kx+b\). Какие нужно выбрать коэффициенты \( k\) и \( b\), чтобы значение функции y не зависело от аргумента \( x\)?

А вот какие: \( b\) – любое, но \( k=0\). И правда, каким бы ни был аргумент \( x\), при умножении на \( k=0\) получится \( 0\)!

Тогда функция станет равна \( y=0\cdot x+b=b\), то есть она принимает одно и то же значение при всех \( x\):

\( y = kx + b:<\rm< >>\left[ \beginE\left( y \right) = \mathbb<\rm< при >>k \ne 0\\E\left( y \right) = \left\< b \right\><\rm< при >>k = 0.\end \right.\)

Теперь рассмотрим несколько задач на линейную функцию.

Три задачи на линейную функцию

  1. При увеличении аргумента функции \( y=kx+b\) на \( 2\), функция увеличилась на \( 4\). Найдите коэффициент \( k\).
  2. При увеличении аргумента функции \( y=kx+b\) на \( 1\), функция уменьшилась на \( 3\). Найдите коэффициент \( k\).
  3. Дана функция \( y=kx+b\). При \( x=3:y=1\), а при \( x=5:y=-1\). Определите коэффициенты \( k\) и \( b\) функции.

Решение задачи №1

Пусть начальное значение аргумента равно некому числу \( <_<1>>\). После увеличения на \( 2\) аргумент стал равен: \( <_<2>>=<_<1>>+2\).

Чему была равна функция до увеличения? Подставляем аргумент в формулу:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Решение задачи №2

Аналогично предыдущей задаче:

Начальное значение аргумента равно \( <_<1>>\), конечное – \( <_<2>>=<_<1>>+1\).

Начальное значение функции: \( <_<1>>=k<_<1>>+b\);

В этот раз функция не увеличилась, а уменьшилась. Это значит, что конечное значение будет меньше начального, а значит, изменение (разность конечного и начального) будет отрицательным:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Определение прямой пропорциональной зависимости

Если проанализировать решения этих двух задач, можно прийти к важному выводу.

При изменении аргумента линейной функции на \( \Delta x\) функция изменяется на \( k\cdot \Delta x\). То есть изменение функции всегда ровно в \( \mathbf\) раз больше изменения аргумента.

По сути это является определением прямой пропорциональной зависимости.

Решение задачи №3

Подставим известные значения аргумента и функции в формулу \( y=kx+b\):

Получили два уравнения относительно \( k\) и \( b\). Теперь достаточно решить систему этих двух уравнений:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

График линейной функции

Как я уже упоминал ранее, график такой функции – прямая линия.

Как известно из геометрии, прямую можно провести через две точки (то есть, если известны две точки, принадлежащие прямой, этого достаточно, чтобы ее начертить).

Предположим, у нас есть функция линейная функция \( y=2x+1\). Чтобы построить ее график, нужно вычислить координаты любых двух точек.

То есть нужно взять любые два значения аргумента \( x\) и вычислить соответствующие два значения функции.

Затем для каждой пары \( \left( x;y \right)\) найдем точку в системе координат, и проведем прямую через эти две точки.

Проще всего найти функцию, если аргумент \( x=0:y\left( 0 \right)=2\cdot 0+1=1\).

Итак, первая точка имеет координаты \( \left( 0;1 \right)\).

Теперь возьмем любое другое число в качестве \( x\), например, \( x=1:y\left( 1 \right)=2\cdot 1+1=3\).

Вторая точка имеет координаты \( \left( 1;3 \right)\).

Ставим эти две точки на координатной плоскости:

Теперь прикладываем линейку, и проводим прямую через эти две точки:

Вот и все, график построен!

Давай теперь на этом же рисунке построим еще два графика: \( y= -1\) и \( y=-x+2\).

Построй их самостоятельно так же: посчитай значение y для любых двух значений \( x\), отметь эти точки на рисунке и проведи через них прямую.

Должно получиться так:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Видно, что все три прямые по-разному наклонены и в разных точках пересекают координатные оси. Все дело тут в коэффициентах \( \displaystyle k\) и \( \displaystyle b\).

Давай разберемся, на что они влияют.

Коэффициенты линейной функции

Для начала выясним, что делает коэффициент \( \displaystyle b\). Рассмотрим функцию \( \displaystyle y=x+b\), то есть \( \displaystyle k=1\).

Меняя \( \displaystyle b\) будем следить, что происходит с графиком.

Итак, начертим графики для разных значений \( \displaystyle b:b=-2,\text< ->1,\text< >0,\text< >1,\text< >2\):

Что ты можешь сказать о них? Чем отличаются графики?

Это сразу видно: чем больше \( \displaystyle b\), тем выше располагается прямая.

Более того, заметь такую вещь: график пересекает ось \( \displaystyle \mathbf\) в точке с координатой, равной \( \displaystyle \mathbf\)!

И правда. Как найти точку пересечения графика с осью \( \displaystyle y\)? Чему равен \( \displaystyle x\) в такой точке?

В любой точке оси ординат (это название оси \( \displaystyle y\), если ты забыл) \( \displaystyle x=0\).

Значит достаточно подставить \( \displaystyle x=0\) в функцию, и получим ординату пересечения графика с осью \( \displaystyle y\):

\( \displaystyle y=k\cdot 0+b=b\)

Теперь по поводу \( \displaystyle k\). Рассмотрим функцию \( \displaystyle \left( b=0 \right).\) Будем менять \( \displaystyle k\) и смотреть, что происходит с графиком.

Построим графики для \( \displaystyle k=-3,\text< ->1,\text< >0,\text< >1,\text< >2:\)

Так, теперь ясно: \( \displaystyle k\) влияет на наклон графика.

Чем больше \( \displaystyle k\) по модулю (то есть несмотря на знак), тем «круче» (под большим углом к оси абсцисс – \( \displaystyle Ox\)) расположена прямая.

Если \( \displaystyle k>0\), график наклонен «вправо», при \( \displaystyle k

Выберем на графике две точки \( \displaystyle A\) и \( \displaystyle B\). Для простоты выберем точку \( \displaystyle A\) на пересечении графика с осью ординат. Точка \( \displaystyle B\) – в произвольном месте прямой, пусть ее координаты равны \( \displaystyle \left( x;y \right)\).

Рассмотрим прямоугольный треугольник \( \displaystyle ABC\), построенный на отрезке \( \displaystyle AB\) как на гипотенузе.

Из рисунка видно, что \( \displaystyle AC=x\), \( \displaystyle BC=y-b\).

Подставим \( \displaystyle y=kx+b\) в \( \displaystyle BC:BC=y-b=kx+b-b=kx\).

Получается, что \( BC = k \cdot AC<\rm< >> \Rightarrow <\rm< >>k = \frac<><> = <\mathop<\rm tg>\nolimits> \alpha \).

Итак, коэффициент \( \displaystyle k\) равен тангенсу угла наклона графика, то есть угла между графиком и осью абсциссс.

Именно поэтому его (коэффициент \( \displaystyle k\)) обычно называют угловым коэффициентом.

В случае, когда \( k

Если же \( \displaystyle k=0\), тогда и \( <\mathop<\rm tg>\nolimits> \alpha = 0,\) следовательно \( \displaystyle \alpha =0\), то есть прямая параллельна оси абсцисс.

Понимать геометрическое значение коэффициентов очень важно, оно часто используется в различных задачах на линейную функцию.

Разбор еще трех задач на линейную функцию

1. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

2. Найдите коэффициенты \( \displaystyle k\) и \( \displaystyle b\) линейной функции, график которой приведен на рисунке. Запишите уравнение этой функции.

3. График какой из функций изображен на рисунке?

Решение задачи №1

Коэффициент \( b\) найти проще простого – это ведь точка пересечения графика с осью \( \displaystyle Oy\):

Угловой коэффициент \( \displaystyle k\) – это тангенс угла наклона прямой.

Для его нахождения выберем две точки \( \displaystyle A\) и \( \displaystyle B\) на графике и построим прямоугольный треугольник с гипотенузой \( \displaystyle AB\):

Источник

Оцените статью
Разные способы