Графический способ умножения
Исследовательский проект по математике НПК «Первые шаги в науку» школьный этап
Скачать:
Вложение | Размер |
---|---|
Графический способ умножения (презентация) | 2.45 МБ |
Графический способ умножения (доклад) | 1.85 МБ |
Предварительный просмотр:
Подписи к слайдам:
Графический способ умножения Выполнили: Блинова Алиса, Афанасьева Анна ученики 5 класса «А» Руководитель: Галайджян Андрей Сетракович , учитель математики МОУ СОШ № 28
Цель исследования: изучить графический способ умножения Задачи: изучить литературу по данной теме; провести анкетирование по теме исследования; научиться применять графический способ умножения; научить одноклассников использовать этот способ при вычислениях; апробировать графический способ умножения в 1А и 5А классах.
Вычислить 6 7 2
Пример 1. Вычислить
Пример 2. Вычислить
Апробация графического способа умножения в 1А классе .
Апробация графического способа умножения в 1А классе .
Апробация графического способа умножения в 1А классе .
Апробация графического способа умножения в 1А классе .
Апробация графического способа умножения в 1А классе .
Апробация графического способа умножения в 1А классе .
Апробация графического способа умножения в 1А классе .
Спасибо за внимание!
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Павел Петрович Бажов. Хрупкая веточка
Чем пахнут ремёсла? Джанни Родари
Кто чем богат, тот тем и делится!
Астрономы получили первое изображение черной дыры
Источник
Исследовательская работа на тему: «Интересные способы умножения чисел»
Исследовательская работа на тему «Интересные способы умножения чисел».
Скачать:
Вложение | Размер |
---|---|
Приложение исследовательской работы | 839.05 КБ |
Предварительный просмотр:
Исследовательская работа на тему:
«Интересные способы умножения чисел»
Выполнила : Королева София
ученица 4 класса
Руководитель: Ситникова О.Н.
Что такое умножение?
Это умное сложение.
Ведь умней умножить раз,
Чем слагать все целый час.
Введение
К сожалению, наш мир устроен так, что мы вынуждены запоминать все нужное и ненужное. Мозг человека как расширяемый склад. И то, как он расширится – целиком в наших руках.
Еще в 1 классе я спросил у мамы: «Что такое умножение?». Этот вопрос возник у меня потому, что моя старшая сестра выполняла задание по математике, связанное с этим действием. Мама мне объяснила принцип умножения чисел, и я очень легко выучил таблицу умножения. Чем старше я становился, тем сложнее были задания по математике, в которых необходимо было умножать разные числа: однозначные на многозначные и многозначные на многозначные. На уроках математики учителя подсказывали, как можно проще считать, применяя различные математические хитрости. Привычные и сложные операции можно выполнять существенно быстрее и эффективнее. В своей исследовательской работе мне хочется рассмотреть дополнительные способы счета, отличные от тех, которые преподаются в школе. Применение различных способов умножения позволит легче считать «в уме», что пригодится как на уроках математики, так и при сдаче экзаменов, а также в повседневной жизни.
Цель моей работы: исследовать различные «непифагоровы» способы умножения чисел.
Объект исследования: математическая операция «умножение».
Предмет исследования : способы умножения чисел.
Актуальность: в школе изучают таблицу умножения, а затем учат умножать числа в столбик. Разумеется, это не единственный способ умножения. На самом деле, существует несколько десятков способов умножения однозначных и многозначных чисел. Исследование различных способов умножения позволит легче считать «в уме», что пригодится как на уроках математики, так и при сдаче экзаменов в 9 и 11 классе, а также в повседневной жизни при покупке товаров, проведении различных подсчётов.
Новизна: знакомство с различными способами умножения.
1. Изучить литературу по теме.
2. Ознакомить учащихся с различными способами умножения чисел.
3. Проанализировать результат (проследить, улучшился ли устный счёт учащихся).
Практическая значимость : пробудить интерес учащихся класса к исследуемой теме, применять полученные знания в повседневной жизни.
— сбор материала о способах умножения чисел;
— систематизация и обобщение результатов исследования;
— метод анализа и обобщения.
Основная часть. Различные способы умножения
В истории математики известно около 30 общих способов умножения, отличающихся либо схемой записи, либо самим ходом вычисления. Преподаваемый метод умножения «в столбик» в школе – один из способов. Но самый ли эффективный ли это способ?
1. Ведический способ умножения
Считается, что основы современной математики были заложены в работах Евклида, Ньютона и Лейбница. Имеется, однако, ряд работ, неизвестных широкому кругу читателей, изложенные в Ведах — древнейшем памятнике человеческой культуры, превосходящем по возрасту, по крайней мере, на несколько тысяч лет все известные древнегреческие труды. Веды, в переводе с санскрита источник знания (ср. с русск. ведать ), согласно индийским верованиям, содержат все знания, как научные, так и этические, исходно данные человечеству. Веды, написанные на санскрите в форме коротких изречений (сутр), не содержат теорем и математических выкладок. Вместо этого имеются операционные инструкции — правила решения определенных задач. Интерпретация инструкций требует как глубокого знания ведической культуры, так и профессиональной математической подготовки. В «Ведах» описано быстрое умножение двух двузначных чисел. Этот метод назван «ведическим» и довольно широко применяется в современной Индии.
Допустим, мы хотим умножить числа: 32×12. Сначала умножим цифры, стоящие в старшем разряде (разряде десятков) и запишем на первое место в произведение:
Далее умножим числа, стоящие в младшем разряде (разряде единиц) и запишем на последнее место в произведении:
Теперь перемножим наружные цифры и внутренние цифры, сложим их и запишем в произведение между раннее записанными числами:
В случае если при умножении получается двузначное число, то привычно пишем последнюю цифру в результат, а первую прибавляем в уме к предыдущему разряду.
- 4 2* 1 8=4 …
- 4 2 *1 8 =4…6 (1 в уме)
- 42*18=4(4*8+2*1+1в уме)6=4(35)8=756
2. Русский способ умножения
Весьма отчётливое понимание значения умножения выражено в старинной «Арифметике» Магницкого.
«…Вы не можете выполнить умножения многозначных чисел — хотя бы даже двузначных — если не помните наизусть всех результатов умножения однозначных чисел, т. е. того, что называется таблицей умножения». В старинной «Арифметике» Магницкого, о которой мы раньше упоминали, необходимость твердого знания таблицы умножения воспета в таких — надо сознаться, чуждых для современного слуха — стихах:
Аще кто не твердит
таблицы и гордит,
Не может познати
числом что множати
И во всей науки,несвобод от муки,
Колико не учиттуне ся удручит
И в пользу не будет аще ю забудет.
Сам Магницкий, автор этих стихов, очевидно, не знал или упустил из виду, что существует способ перемножать числа и без знания таблицы умножения. Способ этот, не похожий на наши школьные приемы, употребителен в обиходе великорусских крестьян и унаследован ими с глубокой древности.
Сущность его в том, что умножение любых двух чисел сводится к ряду последовательных делений одного числа пополам при одновременном удвоений другого числа. Вот пример, необходимо умножить 32×13. Для этого первый множитель будем делить на 2, а второй множитель умножать на 2:
Деление пополам продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число. Последнее удвоенное число и дает искомый результат.
Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение:
И всё бы в этом объяснении было здорово, если бы оно было исчерпывающим. Но, достаточно взять пару других примеров, с другими числами (см. Табл 2.), как будет нетрудно увидеть недостаточность описания и объяснений действия упомянутого алгоритма русского умножения.
В частности, если какое-либо из чисел будет нечётным…
Если нечётным будет только один из множителей, то делить необходимо чётный множитель, а умножать нечётный. Предположим, нам необходимо умножить 16 на 75. (Табл.2) Делим первый множитель на 2, а второй умножаем на 2, пока первый множитель не станет равным 1.
Если же оба множителя – нечётные числа, то один из них представляют в виде суммы ближайшего чётного и единицы и производят те же самые операции, а затем добавляется остаток.
Т.е. если в нашем примере вместо 16 взять 17, то 17 = 16 + 1, что даст (16*75) + (1*75) = 1200 + 75 = 1275. Вся эта нехитрая, но довольно изящная арифметика была представлена вот на таком плакате (Рис.1):
Источник
Графический способ умножения чисел исследовательская работа по математике
Лёгкий способ умножения на 11, в уме………………………….……………. 6
Возведение в квадрат чисел оканчивающихся на 5 ………………………..…7
Введение
«Как хорошо уметь читать…», хотя уметь считать тоже неплохо. В библиотеке я увидел книгу «Быстрый счет» Я.И. Перельмана. Полистав ее, я понял, что долгие математические операции можно выполнять быстрее. Я спрашивал своих одноклассников, знают ли они другие способы счета? Все говорили только о тех способах, которые изучаются в школе. Оказалось, что все мои друзья ничего не знают о других способах. Существует много приемов упрощения арифметических действий. Знание упрощенных приемов вычисления особенно важно в тех случаях, когда вычисляющий не имеет в своем распоряжении таблиц и калькулятора.
В истории математики известно около 30 способов умножения, отличающихся схемой записи или самим ходом вычисления. Метод умножения «в столбик», который мы изучаем в школе – один из способов. Но самый ли эффективный ли это способ? Давайте, посмотрим!
Актуальность:
В последнее время ребята всё с большей неохотой относятся к учёбе, и в частности к математике. Многие ученики не знают даже таблицы умножения! Чтобы заинтересовать своих одноклассников, я решил показать им интересные способы умножения.
Цель исследования:
Оценка эффективности использования различных видов устных вычислений для значительного сокращения времени, потраченного на вычисления и запись решения.
Задачи:
1. Узнать об упрощённых, нестандартных способах устных вычислений при умножении натуральных чисел.
2. Рассмотреть и показать на примерах применение нестандартных способов при умножении чисел.
3. Помочь себе и товарищам овладеть вычислительными навыками, при этом, развивая память и внимание.
4. Собрать материал по теме, проанализировать и представить в виде исследовательской работы.
Методы исследования:
1. Сбор информации.
2. Систематизация и обобщение.
3. Проведение мастер класса.
Гипотеза:
Существующие специальные способы умножения, сокращают время, потраченное на вычисления, позволяют свести вычисления к устным, рассчитанные на ум «обычного» человека и не требующие уникальных способностей.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Часть 1.
Графический способ умножения
Мы в школе учили таблицу умножения наизусть. Да это надо! Но многие мои одноклассники до сих пор испытывают затруднения.
Данный способ заключается в изображении множителей с помощью пересечения вертикальных и горизонтальных линий соответственно множителям. Результатом произведения считается количество пересечений. Например: 3*2 =6
Так же можно считать и двузначные числа, например 32 * 21. На листе бумаги поочередно рисуем линии, количество которых определяется из данного примера. Сначала 32 – линии первого числа рисуются в направлении из верхнего левого угла в нижний правый: сначала 3 линии и чуть ниже — 2 . Затем 21: из нижнего левого, в верхний правый перпендикулярно уже нарисованным, рисуем сначала 2 лини, затем — 1. Затем считаем количество точек пересечения в каждой из трех областей (на рисунке области обозначены в виде окружностей). Итак, в первой области ( область сотен) — 6 точек, во второй (область десятков) — 7 точек, в третьей (область единиц) — 2 точки. Следовательно ответ: 672.
Часть 2.
Умножение на пальцах
Все что нам надо – это 10 пальцев рук. Умножение на 6, 7 и 8.
Поверните кисти ладонями к себе и присвойте каждому пальцу цифры от 6 и до 10 начиная с мизинца.
Теперь попробуем умножить, например, 7*8. Для этого соедините палец №7 на левой руке с пальцем №8 на правой.
А теперь считаем пальцы: количество пальцев под соединенными, вместе с ними – это десятки. А пальцы левой руки, оставшиеся сверху, умножаем на пальцы правой – это и будут наши единицы (3*2=6). Десятки и единицы складываем, и получаем 56.
Снова поверните кисти ладонями к себе, но теперь нумерация пальцев будет идти по порядку с лева на право, то есть от 1 до 10.
Теперь умножаем, например, 2*9. Это значит загибаем палец №2. Все то, что идет до пальца №2 – это десятки (то есть 1 в этом случае). А все то, что остается после пальца №2 – единицы (то есть 8). В итоге получаем 18.
Часть 3.
Лёгкий способ умножения на 11 «в уме»
Для того, чтобы умножать на 11 существует специальный метод, позволяющий совершать операции даже с очень большими множителями. Для начала продемонстрирую пример того, как можно умножить на 11 любое двузначное число.
Пример 42*11 решается просто. Пишем цифры «4» и «2», а между ними «4+2». Получается 462 – это и есть верный ответ. Если сумма в скобках больше 10, тогда пишем по центру количество единиц от суммы, а к первой цифре добавляем «1». Например:
93*11 = 9 (9+3) 3 = 1023
Конечно, можно умножить 93 на 10, и к 930 прибавить 93. Но этот несколько сложнее. В примерах с двузначными числами разницы в скорости решения между описанным выше и традиционным методами практически нет. Но если на 11 умножать большие числа, то сокращенный метод может быть более эффективным. По сути техника умножения на 11 любого числа сводится к сложению соседних чисел. К примеру, умножим 51726 на 11. Вначале пишем первую цифру «5», затем последнюю «6», а между ними суммируем все цифры последовательно.
51 726 * 11 = 5 (5+1) (1+7)(7+2)(2+6) 6 = 568 986
Если сумма в скобках дает результат больше 9, то поступаем также как и в примере с двузначными числами. Не смотря на то, что ответ получается громоздким, мы его получили достаточно просто.
Возведение в квадрат числа, содержащего в себе одни единицы.Все что нам понадобится – подсчитать количество единиц. Для наглядности возведем в квадрат сто одиннадцать тысяч сто одиннадцать. Звучит впечатляюще? Записываем 111111 2 . Подсчитываем количество единиц – 6. А теперь записываем подряд числа от 1 до 6 и опять до 1: 111111 2 = 12345654321.
Часть 4.
Возведение в квадрат чисел оканчивающихся на 5.
Кто-то может посчитать, а зачем это надо, ведь есть более надежный вариант — калькулятор, но на школьных экзаменах калькулятором пользоваться нельзя, в задачах надо оперировать порой большими числами, а значит решать в столбик, на что уходит драгоценное время. А возвести в квадрат число, оканчивающееся на 5, особенно если оно двухзначное, займет 1-2 секунды — проверим?
Итак, как найти квадрат числа, оканчивающегося на 5?
Возведем в квадрат 15 или умножим 15 на само себя:
А теперь по схеме, которая отнимет у Вас пару секунд:
1. Выделим цифры в числе, стоящие до 5 (в нашем случае — это 1)
2. Выделенное число умножим на число единицей больше (в нашем случае: 1 умножим на 2, итого: 1*2=2)
3. К полученному ответу подпишем в конце 25 — ответ готов (в нашем случае к 2 подписываем 25, результат 225). Получилось? Еще несколько примеров:
Трехзначные, четырехзначные и более числа, оканчивающиеся на 5 можно возводить в квадрат по той же схеме, что и квадраты двузначных чисел, но перед 5 будет уже стоять не однозначное число, а значит придется перемножать двухзначные, трехзначные и более числа. А это уже не пара секунд, но если под рукой нет калькулятора, перемножить эти числа в столбик все равно будет быстрее, чем возвести в квадрат нужное число, т.к. это число на порядок больше.
Анкетирование
Преждечем начать исследование необходимо было выяснить, знают ли учащиеся о приёмах быстрого счёта и применяют ли их при выполнении заданий. Мною было проведено анкетирование (приложение 1) в 2-4 и 5-7 классах по вопросам (Анкета №1):
Хорошо ли ты знаешь таблицу умножения от 1 до 9?
Умеешь ли ты выполнять умножение двузначных чисел в уме ?
Знакомы ли тебе способы быстрого счёта?
Ты хотел бы научиться быстро считать?
Рис. 1. Результаты анкетирования №1
Не все уверены в своих силах, но очень хотелось бы научиться быстро считать.
После проведения нескольких мастер классов и тренинговых упражнений было проведено повторное анкетирование (Анкета №2):
Понравились ли тебе способы быстрого счёта?
Ты сможешь их применить самостоятельно?
Как ты думаешь, тебе помогут эти способы быстрого счёта в учёбе?
Какой способ тебе понравился больше всего?
Рис.2. Результаты анкетирования №2.
На четвёртый вопрос:
— в начальной школе ответили: 54% — умножение на 11; 28% — умножение на пальцах; 18% — графический способ;
— в 5-7 классах: 25% — умножение на 11; 38% — умножение на пальцах; 8% — графический способ; 25 % — возведение в квадрат чисел оканчивающихся на 5; 4% — не понравился никакой способ.
Диагностика вычислительных навыков
Практическая часть включает в себя изучение динамики развития вычислительных навыков. Была выдвинута следующая гипотеза: с помощью приемов быстрого счета можно уменьшить время вычисления.
Объект исследования: 5-7 классы.
Время проведения: декабрь-февраль.
Для диагностики был составлен ряд однотипных упражнений, состоящих из 5 примеров на умножение и возведение в квадрат (см. Приложение 2. «Реши примеры»).
Диагностика проводилась в несколько этапов:
Определение времени решения данных примеров известными способами;
Тренинговые занятия с использованием быстрых способов умножения;
Определение времени решения данных примеров с помощью быстрых способов умножения.
Обработка результатов показала:
На первом этапе (декабрь) учащиеся 5-7 классов показали результат в 3 мин. 46 сек.
После изучения способов быстрого умножения (февраль), 5 заданий было решено за 3 мин. 8 сек.
Ниже приведена диаграмма, из которой видно, что прослеживается динамика развития вычислительных навыков приемов быстрого счета.
Рис.3. Динамика развития вычислительных навыков учащихся
Таким образом, принимаем гипотезу о том, что можно улучшить вычислительные навыки с помощью приемов быстрого счета.
Необходимым условием успешной работы, так или иначе связанной с вычислениями, является владение культурой счета. Основу культуры счета составляют вычислительные навыки, совершенствование которых возможно только в практической деятельности. В своей работе мы попытались показать эффективность использования различных приемов устного счета, из которых каждый ученик может выбрать те, которые показались ему целесообразными, и применять их на практике.
В результате проведения практических занятий мы подтвердили, что различные приемы устного счета помогают быстрее и правильней выполнять вычисления, что в свою очередь тренирует внимание и память, формирует числовую зоркость, развивает память.
Научиться быстро и правильно считать не так уж сложно. Вышеперечисленные способы быстрого устного счета рассчитаны на ум «обычного» человека и не требуют уникальных способностей. Главное — более или менее продолжительная тренировка. Наработка вычислительных навыков должна быть систематической, ежедневной, надо стремиться к тому, чтобы как можно больше освоить “хитрых” приемов.
Мне было очень интересно работать над проектом. Я изучил новые для меня способы умножения. У меня появилось желание продолжить нашу работу и узнать ещё многие другие способы устного счёта.
В заключение подчеркнем, что устный счет развивает механическую память, быстроту реакции, умение сосредоточиться, а поиски и обоснование новых приемов служат формированию логических умений. Вот так простые устные упражнения на каждом уроке могут развить каждого из нас. Нужно только стараться и усердно работать!
Список используемой литературы
Депман И.Я., Виленкин Н.Я. За страницами учебника математики: Пособие для учащихся 5-6 кл. сред. шк. – М.: Просвещение, 1989. – 287 с.: ил.
Игнатьев Е.И. В царстве смекалки/ Под редакцией М.К. Потапова, текстол. Обработка Ю.В. Нестеренко. – 4-е изд. – М.: Наука. Главная редакция физико-математической литературы, 1984, 192 с.
Игры и развлечения. Кн.I/Сост. Л.М. Фирсова. – Ь.: Мол. Гвардия, 1989. – 237 c., ил.
Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка: Пособие для учащихся 4-8 кл. сред. шк. — 5-е изд. – М.: Просвещение, 1988. – 160 с.: ил.
Перельман Я.И. Живая математика. — Екатеринбург, Тезис, 1994.
Перельман Я.И. Быстрый счёт. — Екатеринбург, Тезис, 1994.
Ткачева М.В. Домашняя математика. — М., Просвещение,1993.
Зайкин М.Н. Математический тренинг. — Москва, 1996.
Энциклопедический словарь юного математика/ Сост. А.П. Савин. – М.: Педагогика, 1989. – 352 с.: ил.
Борода Л.Я., Борисов А.М. Некоторые формы по привитию интереса к математике. //Математика в школе. — 1990, №11.– с.39-44.
Зимовец К.А., Пащенко В.А. Интересные приемы устных вычислений. //Начальная школа. – 1990, №6. — с.44-46.
Иванова Т. Устный счёт. // Начальная школа. – 1999, №7. — с.11-14.
Липатникова Н.Г. Роль устных упражнений на уроках математики. // Начальная школа. — 1998, №2. — с.34-38.
Приложение 1.
Анкета 1
Хорошо ли ты знаешь таблицу умножения от 1 до 9?
Умеешь ли ты выполнять умножение двузначных чисел в уме ?
Знакомы ли тебе способы быстрого счёта?
Ты хотел бы научится быстро считать?
Анкета 2
Понравились ли тебе способы быстрого счёта?
Ты сможешь их применить самостоятельно?
Как ты думаешь, тебе помогут эти способы быстрого счёта в учёбе?
Источник