Графический способ решения уравнений проект

Графический метод решения уравнений

Я выбрала эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставила цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Моя исследовательская работа поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода. В современной жизни изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Для решения таких уравнений графический метод является весьма эффективным, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра α. Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях. В моей работе рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на едином государственном экзамене ЕГЭ.

Скачать:

Вложение Размер
graficheskiy_metod_resheniya_uravneniy_s_parametrom.pptx 961.23 КБ
graficheskiy_metod_resheniya_uravneniy.docx 2.75 МБ
Предварительный просмотр:

Подписи к слайдам:

Графический метод решения уравнений с параметром Автор: Назарова Алёна у ченица 11 класса « Тарбагатайской СОШ» Руководитель: Покацкая Анна Фёдоровна учитель математики

Цель работы : выявить наиболее рациональное решение, быстро приводящее к ответу. Задача: — рассмотреть теорию методов решения задач с параметрами; — разобрать поэтапно способы решения задач с параметрами на примерах; — сделать выводы по изученному материалу. Объект исследования : Уравнения с параметрами. Методы исследования: Эмпирический: формирование проблемы, гипотезы, задач, составление плана работы, оформление результатов исследовательской работы. Теоретический: анализ литературных и архивных данных, работа в Интернете

История возникновения Задачи на уравнения с параметром встречались уже в астрономическом трактате « Ариабхатиам », составленном в 499 году. Индийский учёный изложил общее правило решения квадратных уравнений, приведённых к канонической системе.

Автор насчитывает 6 видов уравнений, выражая их следующим образом: 1) «Квадраты равны корням», т. е. αx 2 = bx . 2) «Квадраты равны числу», т. е. αx 2 = c. 3) «Корни равны числу», т. е. αx = c. 4) «Квадраты и числа равны корням», т. е. αx 2 + c = bx . 5) «Квадраты и корни равны числу», т. е. αx 2 + bx = c. 6) «Корни и числа равны квадратам», т. е. bx + c = αx 2 .

Теорема Виетта (α + b ) x – x 2 = α b , Т. е. x 2 — (α – b ) x + α b =0, то x 1 = α, x 2 = b . Теорема Виетта — теорема, выражает связь между параметрами, коэффициентами квадратного уравнения и его корнями . Таким образом, Виета установил единообразие в приёмах решения уравнений.

Основные понятия Параметр — независимая переменная, значение которой считается фиксированным или произвольным числом, или числом, принадлежащим заданному условием задачи промежутку. Уравнение с параметром — математическое уравнение, внешний вид и решение которого зависит от значений одного или нескольких параметров. Системой допустимых значений переменных a ,с, k , х называется любая система значений переменных, при которой и левая и правая части этого уравнения принимают действительные значения. Равносильными уравнениями , называются два уравнения содержащие одни и те же параметры.

Методы решения уравнений с параметрами 1. Аналитический метод 2. Графический метод 3. Алгебраический метод 4. Метод симметрии 5. Решение с помощью производной

Небольшая история возникновения этого метода. Исследование общих зависимостей началось еще в 14 веке. Французский учёный Николай Орем стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им « линией интенсивности» Понятие переменный величины, ввёл французский философ и математик Рене Декарт. Также он ввёл фиксированный единичный отрезок и стал рассматривать отношение других отрезков к нему. Таким образом, графики функций за всё время прошли через фундаментальные преобразования., приведших их к тому виду, как мы привыкли.

Графический метод График функции- множество точек, у которых с абсциссы являются допустимыми значениями аргумента х , а ординаты- соответствующими значениями функции у. При графическом решении уравнения с параметром необходимо: 1.Найти область определения уравнения, т.е. область допустимых значений неизвестного и параметра, при которых уравнение может иметь решения. 2.Выразить параметр как функцию от x: 3.В системе координат хОa построить графики функций и для тех значений х , которые входят в область определения уравнения. 4.Определить точки пересечения прямой с графиком функции .

Виды уравнений с параметрами Линейное ( ax=b) Квадратное (ax^2+bx+c=0) Логарифмическое Тригонометрическое

Решение логарифмического уравнения с параматером

Заключение Таким образом, графический способ определения числа корней уравнения зависимости от входящего в него параметра, является более удобным, чем аналитический. И в заключении хотелось бы сказать, что работа над данной темой была интересной и познавательной. Изучив метод решения уравнений с параметром, я обогатила свой опыт: -Новыми понятиями -Узнала методы, которые выходят из рамки школьной программы. -Углубила и расширила свои знания. Изучив данную тему, можем сделать вывод. Параметр- это буква, которая никому ничем не обязана и может принимать любые допустимые значения .

Источник

Исследовательская работа по теме: «Функционально-графический метод решения уравнений»

Понятие функциональной зависимости является одним из центральных в математике, пронизывает все ее приложения. Оно, как ни одно другое, приучает воспринимать величины в их живой изменчивости, во взаимной связи. Изучение поведения функций и построение их графиков является важным разделом школьного курса. Существуют различные способы задания функции: аналитический, табличный, графический. Иногда график является единственным возможным способом задания функции. Свободное владение техникой построения графиков часто помогает решать сложные задачи, а порой является единственным средством их решения.

Я выбрала эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Думаю, что знания, полученные мной в процессе работы, помогут мне при сдаче экзаменов. Мой проект поможет понять другим ученикам применение функционально-графического метода решения задач, узнать о происхождении, развитии этого метода. Материал данной работы можно рекомендовать к использованию на уроках математики или на занятиях школьного математического кружка в качестве дополнительного материала.

Скачать:

Вложение Размер
Презентация исследовательской работы 341.78 КБ
Предварительный просмотр:

Подписи к слайдам:

Подготовила: Гребеникова Софья Викторовна 10 класс Руководитель: Товменко Светлана петровна учитель математики Функционально-графический метод решения уравнений

Содержание 1.Суть функционального метода 2.Применение функционального метода при решении уравнений и неравенств 3.Решение задач из КИМ ЕГЭ по теме «Функционально-графический метод решения уравнений» 4.Заключение 5.Список литературы

Суть функционального метода В ряде случаев точное решение уравнений f (x) = g (x) по изученным правилам затруднительно и ли даже невозможно. Однако бывает достаточно обратить внимание на свойства функций f и g , как сразу решается вопрос о наличии решений уравнения или выявляется наиболее рациональный приём его решения. Основу для таких утверждений даёт нам одно из определений уравнения, как равенства двух функций. Значит , суть функционального метода: использование свойств Функций или построение графиков для решения уравнений. Выделим следующие компоненты метода:

Отыскание области определения функций Отыскание области значения функции Исследование функций на монотонность Исследование функций на чётность Соотнесение свойств функций, входящих в уравнение, с условием Построение графиков функций, входящих в уравнение Отыскание корней уравнения методом подбора Учитывая компоненты метода, выделим способы реализации: Доказательство отсутствия решения уравнения на основе использования области определения, области значения, свойств монотонности и т.д. Отыскание одного или нескольких корней уравнения с последующим доказательством Выяснение того, что область определения содержит один элемент и проверка этого значения на основании определения корня уравнения Преобразование функций, входящих в уравнение к виду, удобному для установления монотонности одной из частей уравнения (или обеих) либо оценки её множества значений Графическое решение уравнений

Применение функционального графического метода при решении уравнений Графический метод решения уравнений На практике довольно часто оказывается полезным г рафический метод решения уравнений. Он заключается В следующем: пусть нам дано уравнение вида f(x)=g(x). Мы строим два графика y=f(x) и y=g(x) на одной координатной плоскости и отмечаем точки, в которых наши графики пересекаются. Абцисса точки пересечения (координата по Х) – это и есть решение нашего уравнения.

Пример. Решить уравнение: √x+1=|x− 1| Решение. Построим графики функций, на одной координатной плоскости: y=√ x+1 и y=|x− 1| Как видно из рисунка наши графики пересекаются в двух точках с координатами: А(0;1) и B(4;3). Решением исходного уравнения будут абсциссы этих точек. Ответ: х=0 и х=4.

Функциональный метод Пример Решим уравнение х5 + 5х – 42 = 0 По виду это уравнение относится к числу тех, которые решаются методом разложения на множители. Этот метод требует значительных усилий. Представив это уравнение в виде: х5 = 42 – 5х и заметив, что функция у=х5 возрастает, а функция у=42-5х убывает, можно с делать вывод, что уравнение имеет не больше одного корня. Подбором выясняем, что этот корень х=2

Применение области определения функции Пример Решений нет Ответ

Пример Проверим, является ли корнем уравнения : ответ:х=0

Использование области значений функции Пример нет решений Ответ: 

Решение уравнений и неравенств с использованием области о пределения, области значения и монотонности функции Пример Подбором находим

Решение уравнений и неравенств с использованием свойства монотонности функции Пример 1. где убывающая  – убывающая, то уравнение по утверждению имеет хотя бы одно решение. Подбором выясняем

Решение задач из КИМ ЕГЭ по теме «Функционально-графический метод решения уравнений» Найти все значения p , при которых уравнение /х-2/ + /х-3/ = р имеет хотя бы один корень Решение: Построим два графика функций: у= /х-2/ + /х-3/ и у=р Для построения графика функции у= /х-2/ + /х-3/ найдем нули выражений х-2=0 и х-3=0; х1=2,х2=3. Рассмотрим, как поведёт себя функция на промежутках: 1.(- ∞; 2) 2. [2;3 3.(3 ; + ∞)

Заключение Выполнив работу, изучив теоретическую часть и изучив примеры решения уравнений, я пришла к выводу, что функциональный метод решения уравнений имеет несколько преимуществ, против других способов решения: упрощённое и ускоренное решения уравнений В современной жизни решение уравнений именно функционально-графическим методом является неотъемлемой частью выпускных и вступительных экзаменов в различные учебные заведения, поэтому очень важно понять и разобраться с этой темой ещё в школе. Для того, чтобы научиться решать уравнения функционально-графическим методом, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе .

Источник

Проект на тему: «Графическое решение уравнений, неравенств с параметрами»

Просмотр содержимого документа
«Проект на тему: «Графическое решение уравнений, неравенств с параметрами»»

Я, Бахмудова Марзи Магомедовна выполнила проектную работу по теме: «Графическое решение уравнений, неравенств с параметрами»

Первый – это подготовительный ( поисковый ).

Второй – это основной (аналитический ).

Графический способ, График, уравнение кривой, линейные функции, координаты.

Третий – заключительный ( презентационный ) защита.

В подготовительный этап входят актуальность темы (нужность и важность).

В основной этап входят графический способ решения уравнений и неравенств с параметрами.

В моем проекте рассмотрены часто встречающиеся типы уравнений, неравенств. И, я надеюсь, что знания полученные мной в процессе работы, помогут мне в моей работе.

Вид проекта – поисковый

Тип проекта – краткосрочный

Участники проекта –учитель, учащиеся.

Очень важно пробудить интерес у детей к поиску решения этой проблемы. Для этого необходимо заинтересовать учащихся, столкнуть их с проблемой.

Формировать у учащихся умения и навыки по решению задач с параметрами, сводящихся к иследованию линейных и квадратных уравнений, неравенств для подготовки к ЕГЭ и к обучению в вузе.

Задачи проекта для учителя: изучить современные подходы к обучению. Задачи проекта для учащихся:

1. Развитие математических способностей учащихся. 2. Формировать у учащихся устойчивого интереса к предмету: 3. Подготовка учащихся к сдаче ЕГЭ и к обучению в вузе.

Графический способ; графики, уравнения, кривые, линейные функции. В моем проекте рассмотрены часто встречающиеся типы уравнений, неравенств с параметрами.

И, я надеюсь, что знание полученные мной в процессе работы, помогут мне в моей работе.

3-й этап: Заключительный.

Решение уравнений и неравенств с параметрами алгебраическим, аналитическим и графическими способами заключается в том, что при одном способе решение может быть громоздким, а при другом – более простым и наглядным. А это говорит о том, что нужно перед началом решения задания оценить его и выбрать тот путь, который проще. Думаю, этим проектом можно найти ответ на главный проблемный вопрос проекта «Графическое решение уравнений и неравенств с параметрами»

Источник

Читайте также:  Способы наложения повязок жгутов шин
Оцените статью
Разные способы