Графический способ решения неравенств 9 класс примеры

Графическое решение неравенств

Приближённое решение неравенств.

Графическое решение неравенств с одним неизвестным.

Графическое решение систем неравенств с двумя неизвестными.

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным, необходимо перенести все его члены в одну часть, т. e . привести к виду:

и построить график функции y = f ( x ). После этого, используя построенный график, можно найти нули функции (см. выше), которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b ( рис.30 ). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x a и x > b ( они выделены жирными стрелками ). Ясно, что знак > здесь условный; вместо него может быть любой другой:

Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т. e . привести неравенства к виду:

и построить графики функций y = f ( x ), y = g ( x ) , . , y = h ( x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т. e . их общую часть.

П р и м е р . Решить графически систему неравенств:

Р е ш е н и е . Сначала построим графики функций y = — 2 / 3 x + 2 и

Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x — 1 и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т. e . привести

нера венства к виду:

2) построить графики функций, заданных неявно: f ( x , y ) = 0 и g ( x , y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой – нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет – то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р . Решить систему неравенств:

Р е ш е н и е . Сначала строим графики линейных функций: 5 x – 7 y = — 11 и

2 x + 3 y = 10 ( рис.32 ). Для каждой из них находим полуплоскость,

внутри которой соответствующее заданное неравенство

справедливо. Мы знаем, что достаточно проверить справедливость

Читайте также:  Умышленное уничтожение чужого имущества общеопасным способом

неравенства в одной произвольной точке области; в данном

случае легче всего использовать для этого начало координат O ( 0, 0 ).

Подставляя его координаты в наши неравенства вместо x и y ,

получим: 5 · 0 – 7 · 0 = 0 > — 11, следовательно, нижняя

полуплоскость ( жёлтого цвета ) является решением первого

неравенства; 2 · 0 + 3 · 0 = 0 неравенство

имеет своим решением также нижнюю полуплоскость ( голубого

цвета ). Пересечение этих полуплоскостей ( область цвета бирюзы )

является решением нашей системы неравенств.

Источник

Метод интервалов, решение неравенств

О чем эта статья:

Определение квадратного неравенства

Неравенство — алгебраическое выражение, в котором используются знаки ≠, , ≤, ≥.

Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.

Решение — значение переменной, при котором неравенство становится верным.

Решить неравенство значит найти множество, для которых оно выполняется.

Квадратное неравенство выглядит так:

где x — переменная,

Квадратное неравенство можно решить двумя способами:

  • графический метод;
  • метод интервалов.

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два корня;
  3. D

Решение неравенства методом интервалов

Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.

Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, или ≥ — наносим штриховку над промежутками со знаками +.

Если неравенство со знаком

Плюс или минус: как определить знаки

Можно сделать вывод о знаках по значению старшего коэффициента a:

если a > 0, последовательность знаков: +, −, +,

если a 0, последовательность знаков: +, +,

если a 0 имеет два корня, то знаки его значений на промежутках чередуются. Это значит, что достаточно определить знак на одном из трех промежутков и расставить знаки над оставшимися промежутками, чередуя их. В результате возможна одна из двух последовательностей: +, −, + или −, +, −.

  • Если квадратный трехчлен при D = 0 имеет один корень, то этот корень разбивает числовую ось на два промежутка, а знаки над ними будут одинаковыми. Это значит, что достаточно определить знак над одним из них и над другим поставить такой же. При этом получится, либо +, +, либо −, −.
  • Когда квадратный трехчлен корней не имеет (D

    Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.

    Пример 1. Решить неравенство методом интервалов: x^2 — 5x + 6 ≥ 0.



      Разложим квадратный трехчлен на множители.

    Неравенство примет вид:

    Проанализируем два сомножителя:

    Первый: х — 3. Этот сомножитель может поменять знак при х = 3, значит при х 0 принимает положительные значения: х — 3 > 0.

    Второй: х — 2. Для этого сомножителя такая «знаковая» точка: х = 2.

    Вывод: знак произведения (х — 3) * (х — 2) меняется только при переходе переменной через значения х = 3 и х = 2.

    В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.

  • Построим чертеж.
  • Рассмотрим интервалы в том же порядке, как пишем и читаем: слева направо.

    Отобразим эти данные на чертеже:

    2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.

    • (25 — 3) (25 — 2) = 22*23 = 506 > 0

    Вывод: при х > 3 верно неравенство (х — 3) * (х — 2) > 0. Внесем эти данные в чертеж.


    Исходное неравенство: (х — 3) * (х — 2) ≥ 0.

    Если (х — 3) * (х — 2) > 0:

    Если (х — 3) (х — 2) = 0 — при х1 = 3, х2 = 2.

    Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.

    Ответ: х ≤ 0, х ≥ 3.

    Пример 2. Применить метод интервалов для решения неравенства х2+4х+3

    Источник

    Конспект урока 9 класс на тему «Графическое решение неравенства с двумя переменными»

    Конспект урока в 9 классе по алгебре

    Графическое решение неравенства с двумя переменными

    образовательные: рассмотреть графики неравенств с двумя переменными;

    развивающие: способствовать развитию логического мышления, математической речи учащихся, внимания, памяти;

    воспитательные: воспитание интереса к математике как учебному предмету через современные технологии преподавания; способствовать развитию навыков самоконтроля;

    Оборудование: учебник, доска.

    Тип урока: Урок изучения новых знаний.

    Приветствие. Проверка готовности учеников к уроку.

    Повторение и закрепление пройденного материала

    1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

    2. Контроль усвоения материала (самостоятельная работа).

    1. Сумма двух чисел равна 30, а их произведение равно 216. Найдите эти числа.

    2. Гипотенуза прямоугольного треугольника равна 20 см, а его периметр равен 48 см. Найдите катеты треугольника.

    1. Сумма двух чисел равна 40, а их произведение равно 364. Найдите эти числа.

    2. Гипотенуза прямоугольного треугольника равна 25 см, а его периметр равен 60 см. Найдите катеты треугольника.

    Учитель объявляет тему и цель урока.

    Изучение нового материала

    Часто приходится изображать на координатной плоскости множество решений неравенства с двумя переменными. Напомним, что решением неравенства с двумя переменными называют пару значений этих переменных, которая обращает данное неравенство в верное числовое неравенство.

    Рассмотрим неравенство 3х 2 – 1/ y ≤ 8.

    Пара значений переменных (-1; 1) обращает это неравенство в верное числовое неравенство 3 · (-1)2 – 1/1 ≤8, или 2 ≤ 8, и является решением неравенства. Пара значений (2; 1) приводит к неверному числовому неравенству 3 · 22 – 1/1 ≤ 8, или 11 ≤ 8, и не является решением данного неравенства.

    На примерах рассмотрим, как изображается множество решений неравенства с двумя переменными на координатной плоскости.

    Изобразим на координатной плоскости множество решений неравенства 2у + 3х ≤ 6.

    Сначала построим прямую 2у + 3х = 6, или у = 3 – 3/2х. Она разбивает множество всех точек координатной плоскости на точки, расположенные выше ее, и точки, расположенные ниже ее. Возьмем из каждой области по контрольной точке, например A (1; 1) и B (1; 3).

    Координаты точки А удовлетворяют данному неравенству 2у + 3х ≤ 6, т. е. 2 · 1 + 3 · 1 ≤ 6.

    Координаты точки В не удовлетворяют данному неравенству 2 · 3 + 3 · 1 ≤ 6.

    Так как данное неравенство может изменить знак на прямой 2у + 3х = 6, то неравенству удовлетворяет множество точек той области, где расположена точка А. Заштрихуем эту область.

    Таким образом, мы изобразили множество решений неравенства 2у + 3х ≤ 6.

    Изобразим множество решений неравенства х 2 + 2х + у 2 — 4у + 1 >0 на координатной плоскости.

    Построим сначала график уравнения х 2 + 2х + у 2 — 4у + 1 = 0. Выделим в этом уравнении уравнение окружности: (х 2 + 2х + 1) + (у 2 — 4у + 4) = 4, или (х + 1) 2 + (у — 2) 2 = 22.

    Это уравнение окружности с центром в точке O (-1; 2) и радиусом R = 2. Построим эту окружности.

    Так как данное неравенство строгое и точки, лежащие на самой окружности, неравенству не удовлетворяют, то строим окружность.

    Легко проверить, что координаты центра О окружности данному неравенству не удовлетворяют. Выражение х 2 + 2х + у 2 — 4у + 1 меняет свой знак на построенной окружности. Тогда неравенству удовлетворяют точки, расположенные вне окружности. Эти точки заштрихованы.

    Изобразим на координатной плоскости множество решений неравенства (у — х 2 )(у — х — 3) ≤ 3.

    Сначала построим график уравнения (у — х 2 )(у — х — 3) = 0. Им является парабола у = х 2 и прямая у = х + 3. Построим эти линии и отметим, что изменение знака выражения (у — х 2 )(у – х — 3) происходит только на этих линиях. Для точки А(0; 5) определим знак этого выражения: (5 — 0 2 )(5 — 0 — 3) > 0 (т. е. данное неравенство не выполняется). Теперь легко отметить множество точек, для которых данное неравенство выполнено (эти области заштрихованы).

    Как видно из рассмотренных примеров, для построения множества решений неравенства с двумя переменными используется метод интервалов на координатной плоскости.

    Задание на уроке

    № 482 (а, б); 483 (б, в); 484 (г); 485 (а); 486 (в); 487 (а, в); 488 (б); 489 (а); 490 (б); 491 (а); 492 (б).

    № 482 (в); 483 (а, г); 484 (в); 485 (б); 486 (г); 487 (б, г); 488 (а); 489 (б); 490 (а); 491 (б); 492 (а).

    Какая была сегодня тема урока?

    Какую цель ставили?

    Расскажите по схеме, чему научились на уроке:

    Источник

    Читайте также:  Способ оплаты услуг жкх
  • Оцените статью
    Разные способы