- Графическое представление прямолинейного движения
- Графическое представление равномерного прямолинейного движения
- ПРИМЕР ОПИСАНИЯ ДВИЖЕНИЯ В ВЫБРАННОЙ СИСТЕМЕ ОТСЧЕТА
- ГРАФИК ЗАВИСИМОСТИ СКОРОСТИ ОТ ВРЕМЕНИ
- ГРАФИК ЗАВИСИМОСТИ ПЕРЕМЕЩЕНИЯ ОТ ВРЕМЕНИ
- ГРАФИК ЗАВИСИМОСТИ КООРДИНАТЫ ТЕЛА ОТ ВРЕМЕНИ
- Графический способ прямолинейного движения
- 2. Равномерное движение
- x = х0 + v • t,
- 3. Скорость прямолинейного равномерного движения
- Равномерное прямолинейное движение в физике — формулы и определения с примерами
- Графическое представление равномерного прямолинейного движения
- График проекции скорости
- График проекции перемещения
- График пути
- График координаты
- По графику проекции скорости можно найти проекцию перемещения и пройденный путь
- По углу наклона графика проекции перемещения можно оценить скорость движения
- Пример №1
- Пример №2
- Прямолинейное равномерное движение и скорость
- Пример №3
- Скорость при равнопеременном прямолинейном движении
- Перемещение при равнопеременном прямолинейном движении
- Равноускоренное и равнозамедленное движения
- Кинематика прямолинейного движения
Графическое представление прямолинейного движения
Конспект по физике для 8 класса «Графическое представление равномерного прямолинейного движения». Какие графики используют для получения представления о равномерном прямолинейном движении.
Графическое представление равномерного
прямолинейного движения
Построение графиков широко используется в физике для наглядного представления различных физических процессов. Графики помогают лучше понять физическое явление, проанализировать его и найти ответы на поставленные вопросы.
Рассмотрим проекции скоростей поездов на ось, направление которой совпадает с направлением движения первого поезда.
Проекция скорости первого поезда υ1x в этом случае будет положительной, а проекция скорости второго поезда υ2х — отрицательной. Здесь отрицательное значение проекции скорости означает, что движение происходит в направлении, противоположном направлению оси.
ПРИМЕР ОПИСАНИЯ ДВИЖЕНИЯ В ВЫБРАННОЙ СИСТЕМЕ ОТСЧЕТА
Два поезда выехали навстречу друг другу. Первый поезд выехал со станции А по направлению к станции D. Второй поезд выехал со станции D к станции А. У станции С, находящейся в 40 км от станции А, они встретились. По прошествии некоторого времени t первый поезд доехал до станции D, а второй поезд проехал станцию В. Расстояние между станциями В и С равно 20 км. Расстояние между станциями С и D равно 30 км. Определим координаты каждого поезда относительно станции А и расстояние между ними через время t.
Пусть направление координатной оси совпадает с направлением от А к D, а начало отсчёта х = 0 совпадает с точкой А. Обозначим х0 = хС = 40 км — координата поездов во время их встречи. Проекция перемещения первого поезда положительна:
а проекция перемещения второго поезда имеет отрицательный знак:
Координаты поездов х1 и х2 соответственно равны
Подставив данные задачи в формулы, получим, что координата первого поезда через время t:
х1 = 40 км + 30 км = 70 км.
Координата второго поезда через время t:
х2 = 40 км — 20 км = 20 км.
Из курса математики известно, что расстояние между точками на оси равно модулю разности их координат. Итак, расстояние между поездами через время t равно
ГРАФИК ЗАВИСИМОСТИ СКОРОСТИ ОТ ВРЕМЕНИ
При равномерном движении скорость тела с течением времени остается неизменной а . Поэтому график зависимости модуля вектора скорости от времени t — это прямая, параллельная оси абсцисс. Зафиксируем время, прошедшее от начала движения, и опустим v перпендикуляр из выбранной точки на график скорости. Площадь полученного прямоугольника равна произведению υt. Но нам известно, что s = υt. Следовательно, эта площадь равна модулю перемещения.
Итак, при прямолинейном равномерном движении модуль вектора перемещения численно равен площади прямоугольника под графиком скорости.
Давайте опишем движение тела по приведённому на рисунке б графику зависимости скорости движения от времени. При этом считаем, что тело двигалось прямолинейно. В разные промежутки времени, каждый из которых равен Δt = 1 ч, тело двигалось с различной скоростью. Сначала скорость тела была равна 40 км/ч, затем 60 км/ч, потом 80 км/ч и, наконец, 20 км/ч. При этом за первый час тело переместилось на υ1Δt = 40 км, за второй — на 60 км, за третий — на 80 км, за четвёртый — на 20 км. Таким образом, перемещение тела за 4 ч движения составило:
ГРАФИК ЗАВИСИМОСТИ ПЕРЕМЕЩЕНИЯ ОТ ВРЕМЕНИ
График зависимости перемещения тела от времени при прямолинейном равномерном движении — это прямая, проходящая через начало координат в.
Давайте определим по данному графику скорость движения тела. Выберем на прямой точку А и определим перемещение s1 и соответствующий момент времени t1. Скорость движения тела будет равна υ = s1/t1
Чем круче проходит график перемещения, т. е. чем больше его угол наклона к оси абсцисс, тем больше скорость движения тела. Действительно, точке В на прямой 2 соответствует большее перемещение s2 за то же самое время t1, следовательно, график 2 описывает движение с большей скоростью.
ГРАФИК ЗАВИСИМОСТИ КООРДИНАТЫ ТЕЛА ОТ ВРЕМЕНИ
Зависимость координаты тела от времени описывается формулой х = υ0 + υxt.
Поскольку эта зависимость линейная, то соответствующий график (график движения) представляет собой прямую линию г. В начальный момент времени t = 0 координата х = х0.
Вы смотрели Конспект по физике для 8 класса «Графическое представление равномерного прямолинейного движения».
Источник
Графический способ прямолинейного движения
Прямолинейное движение тела — это движение, при котором тело движется по прямой линии в данной системе отсчёта.
Чтобы описать прямолинейное движение в выбранной системе отсчёта, необходимо в момент начала движения включить часы и измерять координату тела в различные моменты времени. Результаты измерений представляют в виде таблицы (табличный способ описания движения) или графика движения в осях: время — координата (графический способ описания движения).
Если известна графическая зависимость координаты тела от времени в виде непрерывной линии, то движение тела описано полностью, т. е. можно:
- Определить координату тела в любой момент времени движения (ответить на вопрос «где?»).
- Определить момент времени, в который тело имело заданную координату (ответить на вопрос «когда?»).
- Охарактеризовать движение тела (указать, покоилось ли тело, двигалось ли в положительном или отрицательном направлении координатной оси, как быстро изменялась его координата с течением времени).
2. Равномерное движение
Прямолинейное движение тела называют равномерным, если тело за любые равные промежутки времени проходит равные расстояния в одном и том же направлении. Изменением координаты тела за промежуток времени от момента t1 до момента t2 называют разность х2 — х1 между конечным и начальным значениями координаты.
Прямолинейное равномерное движение характеризуется тем, что изменение координаты тела за единицу времени (её обычно обозначают латинской буквой v) есть величина постоянная. График зависимости координаты х тела от времени t для такого движения представляет собой прямую линию . При этом зависимость координаты тела от времени имеет вид:
x = х0 + v • t,
где х0 — начальная координата тела, t — момент времени после начала движения, v — постоянная величина, равная изменению координаты тела за единицу времени, х — координата тела в момент времени t.
3. Скорость прямолинейного равномерного движения
Если тело движется равномерно прямолинейно, то физическую величину v, численно равную изменению его координаты за единицу времени, называют значением скорости равномерного прямолинейного движения. В СИ единица скорости — метр в секунду (м/с).
Скорость — векторная величина, которая характеризуется не только своим модулем, но и направлением. Если значение скорости положительно, то скорость направлена в положительном направлении оси X. Если же значение скорости отрицательно, то скорость направлена в отрицательном направлении оси X.
Конспект урока по физике в 7 классе «Прямолинейное равномерное движение».
Решение задач на равномерное движение в конспекте: «Задачи на движение».
Источник
Равномерное прямолинейное движение в физике — формулы и определения с примерами
Содержание:
Равномерное прямолинейное движение:
Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?
Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?
Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за
Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.
В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.
Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:
Из равенства (1) следует, что скорость — векторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к.
).
Отношение для всех участков движения на рисунке 43 одинаково:
Значит, скорость
равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
Из формулы (1) легко найти перемещение:
и путь (равный модулю перемещения
):
А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).
Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:
Согласно рисунку 44 за время автомобиль совершил перемещение
Подставляя
в равенство (4), получим:
Приняв запишем формулу для координаты автомобиля:
Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.
Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.
Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.
Для любознательных:
Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.
Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!
Главные выводы:
- При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
- Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
- При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
- Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.
Пример решения задачи:
Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением где
Определите: 1) проекцию скорости лодки 2) координату лодки
в момент времени
3) проекцию перемещения
лодки на ось Ох и путь, пройденный лодкой за время от момента
до момента
Решение
Сделаем рисунок к задаче.
По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив
получим
Найдем
Из рисунка 49: проекция перемещения
Ответ:
Графическое представление равномерного прямолинейного движения
Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.
Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.
В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.
Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Тани
Как представить графически характеристики их движения?
Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при координата Леши
Тани
Построим графики зависимости проекции скорости проекции перемещения
пути S и координаты X от времени t.
График проекции скорости
Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Так как проекции
постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).
Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.
График проекции перемещения
Проекция перемещения совершенного за время t, определяется формулой
(см. § 6).
Зависимость проекции перемещения от времени для Леши или
График
— наклонная прямая I (рис. 53).
Для Тани или
График
— наклонная прямая II, изображенная на рисунке 53.
Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.
График пути
Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Поэтому при
график пути совпадает с графиком проекции перемещения (прямая I), а при
график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.
Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.
График координаты
Его называют также графиком движения.
По формуле , используя данные из условия задачи и рисунок 51, находим зависимости координаты
Леши и
Тани от времени
Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.
Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.
По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.
Что еще можно определить по графикам?
По графику проекции скорости можно найти проекцию перемещения и пройденный путь
Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна а основание — времени t. Значит, площадь прямоугольника равна
Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При
проекция перемещения отрицательна, и площадь надо брать со знаком «минус».
Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.
По углу наклона графика проекции перемещения можно оценить скорость движения
Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.
Главные выводы:
Для равномерного прямолинейного движения:
- График проекции скорости — прямая, параллельная оси времени.
- Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
- Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.
Пример №1
Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Через время
после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью
Определите расстояние между участниками движения через время
после их встречи, если
Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.
Решение
Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.
В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:
Найдем координату велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).
Кинематический закон движения велосипедиста имеет вид:
Расстояние между мотоциклистом и велосипедистом через время после их встречи равно сумме путей, которые они проделают за это время. Значит,
Пример №2
Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая
Объясните причину несовпадения.
Графиками пути s, проекции и модуля перемещения
(рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.
Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).
Прямая 2 является графиком пути и модуля перемещения велосипедиста. Прямая — графиком проекции его перемещения.
Графики координат представлены на рисунке 58. Они выражают зависимости (прямая 1) и
(прямая 2). Точка А определяет время встречи и координату места встречи.
Ответ:
Прямолинейное равномерное движение и скорость
Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.
Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.
При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:
Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено:
Так как отношение в формуле является положительной скалярной величиной, то направление вектора скорости
совпадает с направлением вектора перемещения
Единица измерения скорости в СИ — метр в секунду:
Если скорость известна, то можно определить перемещение s материальной точки за промежуток времени
при прямолинейном равномерном движении:
При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения:
Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:
Можно получить формулу для вычисления координаты точки в произвольный момент времени (см.: тема 1.2):
Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).
Из формулы (1.5) определяется выражение для проекции скорости:
Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.
Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость — время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):
График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f):
Пример №3
Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста скорость второго велосипедиста
(g)?
Определите: а) координату и время встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время
прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.
a) При решении задачи соблюдается следующая последовательность действий:
I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).
II действие. Уравнение движения записывается в общем виде:
III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде:
IV действие. Координаты велосипедистов при встрече равны: Это равенство решается для
V действие. Для определения координат и
встречи велосипедистов необходимо решить уравнения их движения для времени
Так как то
b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:
c) Время прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:
или
Скорость при равнопеременном прямолинейном движении
Из формулы (1.14) видно, что если известны ускорение и начальная скорость тела
то можно определить его скорость в любой момент времени:
или ее проекцию на ось
Если начальная скорость равна нулю то:
Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени — прямая линия, проходящая через начало координат (или через Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).
Перемещение при равнопеременном прямолинейном движении
Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком и осью времени.
На приведенных графиках — это заштрихованная фигура трапеции (см: с):
или в векторной форме:
Если в последнюю формулу вместо подставить выражение (1.18), то получим
обобщенную формулу перемещения для равнопеременного движения:
Таким образом, формула проекции перемещения (например, на ось при равнопеременном прямолинейном движении будет:
а формула координаты:
(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя то:
Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени и его график представляет собой параболу, проходящую через начало координат (d).
В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем
Это выражение подставляется в формулу (1.21):
После простых преобразований получаем:
Для проекции конечной скорости получаем: Если движение начинается из состояния покоя
то проекции перемещения и скорости будут равны:
Равноускоренное и равнозамедленное движения
Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.
При равноускоренном движении векторы и
имеют одинаковые направления. В этом случае знаки у обеих проекций
и
или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя
то независимо от направления движения, оно во всех случаях будет равноускоренным.
При равнозамедленном движении векторы и
имеют противоположные направления. В этом случае проекции
и
имеют противоположные знаки, если один из них отрицательный, то другой — положительный.
В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.
Прямолинейное равноускоренное движение | |||
Прямолинейное равнозамедленное движение | |||
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Прямолинейное неравномерное движение
- Прямолинейное равноускоренное движение
- Сложение скоростей
- Ускорение в физике
- Пружинные и математические маятники
- Скалярные и векторные величины и действия над ними
- Проекция вектора на ось
- Путь и перемещение
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Источник