Графический способ построения эллипса

Графический способ построения эллипса

Построение эллипса с помощью циркуля. Как начертить эллипс?

Эллипс — геометрическая фигура. В математике имеет весьма занимательные свойства. Но наша задача не рассчитывать фокальные расстояния, а уметь построить эллипс на чертеже. В курсе инженерной графики эллипсы встречаются наиболее часто в трех случаях:
-сечение конуса плоскостью пересекающей ось конуса,
-сечение циллиндра наклонной плоскостью
-изображение окружностей в аксонометрических проекциях (построение изометрической проекции или диметрической проекции)

Если начертить эллипс малого размера от руки и на глаз еще не так сложно, то при необходимости построить эллипс с осями к примеру более 50-60 мм используется специальная методика построения эллипсов — это значительно влияет на конечную красоту чертежа, а остатки построений на нем добавят вам небольшой плюс в глазах преподавателя, даже если он попросит вас их потом стереть. Строго говоря, методик построения эллипсов несколько. Мы рассмотрим только одну из них.

Чтобы не быть совсем абстрактным, я предлагаю начертить эллипс, являющийся отображением окружности в изометрии. Заодно вспомним коэффициенты искажения. Итак, возьмем окружность диаметром 30мм. Такая окружность в изометрии будет иметь вид эллипса с осями 36,6мм и 21,3 мм.

Начнем построение эллипса. На первом этапе необходимо из центра эллипса провести две вспомогательные окружности, диаметры которых будут равны большой и малой оси эллипса. Затем, из центра проведем несколько лучей, так чтоб они пересекали обе окружности. Для удобства отображения я буду рассматривать одну четверть. Количество вспомогательных лучей зависит исключительно от желаемой точности построений и размеров эллипса, в нашем случае это будут 3 луча (рекомендую такое количество лучей для эллипсов с большой осью от 60 и где-то до 120 мм)

На следующем шаге мы получим дополнительные точки эллипса. Для этого, мы поочередно сделаем с каждым лучем следующее: из точки пересечения луча с малой окружностью проведем горизонтальную линию в сторону большой окружности, а из точки пересечения луча с большой окружостью проведем линию до пересечения с только что начерченной горизонталью. Таким образом мы получим точки 2, 3 и 4. Точки 1 и 5 так же принадлежат эллипсу.

Теперь, имея пять точек мы без труда проведем через них кривую. Обратите внимание, что в точке пересечения с осями кривая эллипса строго перпендикулярна им.

Нам осталось лишь достроить оставшиеся три четверти фигуры. Я рекомендую вам не производить аналогичные построения, а аккуратно перенести\отразить точки 2, 3, 4 через оси. Но конечно же, можно и повторить предыдущие шаги для закрепления навыка.

На этом построение эллипса заканчивается. Надеюсь, что нам удалось достаточно подробно и понятно изложить материал, и построить эллипс для вас теперь сущий пустяк. Желаю вам успехов в учебе! Если же что-то катастрофически не получается, или совсем нет времени и сил — вы всегда можете обратиться к нам за помощью в оформлении чертежей.

Читайте также:  Способы повышения эффективности деятельности фирмы

Вы можете сказать «спасибо!» автору статьи:

пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект «White Bird. Чертежи Студентам»

или запишите наш телефон и расскажите о нас своим друзьям — кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки — и кто-то еще сможет освоить черчение.

А вот это — не реклама. Это напоминание, что каждый из нас может сделать. Если хотите — это просьба. Мы действительно им нужны:

Автор комментария: Рустам
Дата: 2011-03-22

Автор комментария: закир
Дата: 2011-05-19

огромное спасибо оч выручили.

Автор комментария: Вова
Дата: 2011-12-15

Автор комментария: Богдан Тарасюк
Дата: 2012-01-13

Автор комментария: ваня
Дата: 2012-01-24

Автор комментария: Виталий
Дата: 2012-05-13

Автор комментария: Леон
Дата: 2012-05-25

Благодарю! Все очень понятно обьяснили.

Автор комментария: антон
Дата: 2012-05-31

спасибо черчу через компас по вашим примерам вроде получается

Автор комментария: Влад
Дата: 2012-10-08

спасибо большое! все понятно. очень помогло

Автор комментария: Илья
Дата: 2012-10-09

но есть же способ проще. просто я его призабыл за пол года поэтому и зашел сюда
Точно, вы правы! Именно поэтому по тексту написано, что есть несколько способов, и мы рассмотрим один из них. Отмечу, что приведенный здесь способ (при достаточном количестве точек) дает максимальную точность построения.

Автор комментария: Женя
Дата: 2012-10-14

Спасибо. Очень помогло!

Автор комментария: Витя
Дата: 2012-10-22

Автор комментария: Нкитка
Дата: 2012-10-26

тупой способ циркулем намного проще и быстрей

А никто и не претендует — всего лишь один из способов. Все зависит от того, какую точность нужно достичь. Я к примеру вообще предпочитаю в САПровских системах чертить. А вы? 🙂

Автор комментария: Татьяна
Дата: 2012-11-04

Автор комментария: Владимир
Дата: 2012-11-24

Спасибо в ремонте очень пригодилось!

Автор комментария: Светлана
Дата: 2012-12-17

Огромное спасибо!Все просто и доступно!
Благодарю за отзыв, Светлана! Слова такого плана меня всегда наводят на мысль: а почему те люди, которые получают от нашего государства деньги за написание методических пособий, делают это не просто, не понятно, и не доступно? Очень надеюсь, что они это не специально

Автор комментария: Женя
Дата: 2013-01-21

а точки от руки соединять? как-то у меня не очень ровно получается.

Тут дело такое. В идеале — после определения некоторого количества точек хорошо было бы соединить их по лекалу. Но я уверен, что для вас такой вариант не станет облегчением, поскольку я не помню, чтоб где-то кого-то учили работать с лекальными линейками. Однако, если они есть под рукой — можете попробовать. Возможно вам удастся подобрать верные кривые. Ну а если нет — то просто старайтесь поаккуратнее соединить от руки. Либо можно увеличить количество вспомогательных точек (после чего возненавидеть построение эллипсов 🙂 ) Главное — не опускайте рук!

Автор комментария: ДАНИИЛ
Дата: 2013-01-21

СЕРДЧЕЧНАЯ БЛАГОДАРНОСТЬ ЗА ВАШ ТРУД

sposibo ochen pomoglo

Автор комментария: рома
Дата: 2013-03-12

Великолепно!) спасибо большое!)

Автор комментария: Анатолий.
Дата: 2013-07-07

Читайте также:  Что не является основными способами защиты населения

Спасибо! Очень понятно и доступно расказано о построение элипса. С геометрией у меня все в порядке, а вот элипсы строить не доводилось. По Вашей методике постою элипс на потолке, теперь точно получится! Спасибо еще раз.

Автор комментария: Павел
Дата: 2013-07-09

Спасибо огромное всен очень понятно объяснено!

Автор комментария: Андраник
Дата: 2013-07-18

Большое спасибо! Выручил.

Автор комментария: Владислав
Дата: 2013-09-04

Спасибо! Потребовалось прорезать точное отверстие под круглый дымоход в наклонной плоскости, Ваш метод построения эллипса очень помог!

Автор комментария: фариза
Дата: 2014-01-09

так просто,только есть один вопрос,можете сказать расстояний между точками (1,2,3,4,5)

Автор комментария: 999
Дата: 2014-02-16

«Теперь, имея пять точек мы без труда проведем через них кривую» Они что издеваются?!

Автор комментария: сережа
Дата: 2014-03-06

как начертить машину в компасе

Автор комментария: Александр
Дата: 2014-03-11

Здравствуйте!Помогите рассчитать половинку элипса или половинку овала .Где длина равна а-4800мм а ширина половинки овала равна b-500мм.Спасибо

Автор комментария: Андрей
Дата: 2014-05-03

Благодарен всё ясно, просто и понятно.

Автор комментария: Светлана
Дата: 2014-05-17

Автор комментария: Majid Shabanov
Дата: 2014-06-17

Большое спасибо! Очень доступном виде обьяснили, без лищных слов.

Автор комментария: arhitektor stroitel
Дата: 2014-07-06

http://oval.ing-grafika.ru/1.html 2 способ посмотрите.Он удобнее вроде.

Автор комментария: Альбина
Дата: 2014-09-28

Cпасибо! Очень доступно изложено) Здорово получилось)))

Автор комментария: наталья
Дата: 2014-10-12

огромное Вам спасибо

Автор комментария: алик
Дата: 2014-11-25

Большое человеческое СПАСИБО

Автор комментария: Юля
Дата: 2014-12-10

Автор комментария: Александр
Дата: 2015-01-06

Принцип построения изложен предельно понятно. Однако, не изложено объяснение того, что в результате проведенных операций должен получиться именно эллипс, а не овал. Я понимаю, что принцип построения эллипса правильный, но нет объяснения почему.

Автор комментария: Роман
Дата: 2015-03-02

Спасибо! Реально доступно объяснили! Очень помогло.

Автор комментария: Міша
Дата: 2015-03-03

Дуже дякую виручили, дуже допомогло)))) +1

Автор комментария: Илья
Дата: 2015-03-19

По поводу «тупой способ циркулем намного проще и быстрей». Это как?

Автор комментария: :O
Дата: 2015-11-25

Черт.. Это так просто!

Автор комментария: Елизавета
Дата: 2016-02-04

СПАСИБО! не была на паре, задали дома по определенным размерам начертить, просто спасли!

Ну вот и замечательно 🙂 Эх, все никак не удается мне подготовить продолжение — еще один-два способа разобрать

Автор комментария: j
Дата: 2016-10-22

Автор комментария: Владимир
Дата: 2017-01-10

Всё просто, спасибо за комментарии.

Автор комментария: Рустем
Дата: 2017-04-17

Автор комментария: Володя
Дата: 2018-01-17

У вас уже заданны большой и малый диаметры зллипса, прошу к данному варианту добавить метод засечек исходя только из данных диаметра круга. С.У.Стенин.

Автор комментария: Александр
Дата: 2018-02-02

Великолепно. просто,доходчиво и без лишней информации!!

Автор комментария: Дамир
Дата: 2018-04-03

Автор комментария: саня
Дата: 2018-06-13

Попробуйте еще. Судя по остальным отзывам — способ «ну очень рабочий!»

Добавьте свой комментарий:

Наша страница в ВК:

Антон,как постоить фронтальный разрез, и изометрию с четвертью?

Руслан, построение разреза, а так же построение изометрии с вырезом четверти вы можете познать в разделе «Уроки по черчению». Здесь размещены специально разработанные онлайн уроки по черчению для начинающих и пошаговые инструкции по черчению и инженерной графике.

Читайте также:  Способ представления синусоидальных функций

Источник

Эллипс — свойства, уравнение и построение фигуры

Среди центральных кривых второго порядка особое место занимает эллипс, близкий к окружности, обладающий похожими свойствами, но всё же уникальный и неповторимый.

Определение и элементы эллипса

Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.

По форме график эллипса представляет замкнутую овальную кривую:

Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.

Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.

Точки эллипса, являющиеся концами осей, называются вершинами.

Расстояния от точки на линии до фокусов получили название фокальных радиусов.

Расстояние между фокусами есть фокальное расстояние.

Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.

Основные свойства эллипса

имеются две оси и один центр симметрии;

при равенстве полуосей линия превращается в окружность;

все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.

Уравнение эллипса

Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.

Для составления уравнения достаточно воспользоваться определением, введя обозначение:

а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);

c – половина фокального расстояния;

M(x;y) – произвольная точка линии.

В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)

После ввода ещё одного обозначения

получается наиболее простой вид уравнения:

a 2 b 2 — a 2 y 2 — x 2 b 2 = 0,

a 2 b 2 = a 2 y 2 + x 2 b 2 ,

Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).

В случае (b b) формула эксцентриситета (ε) принимает вид:

Чем меньше эксцентриситет, тем более сжатым будет эллипс.

Площадь эллипса

Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:

a – большая полуось, b – малая.

Площадь сегмента эллипса

Часть эллипса, отсекаемая прямой, называется его сегментом.

Длина дуги эллипса

Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:

Радиус круга, вписанного в эллипс

В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:

Радиус круга, описанного вокруг эллипса

Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:

Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.

Как построить эллипс

Построение линии удобно выполнять в декартовых координатах в каноническом виде.

Строится прямоугольник. Для этого проводятся прямые:

Сглаживая углы, проводится линия по сторонам прямоугольника.

Полученная фигура есть эллипс. По координатам отмечается каждый фокус.

При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.

Источник

Оцените статью
Разные способы