Графический способ нахождения средней скорости

Способы нахождения средней скорости в физике

Основные понятия и законы кинематики

Кинематика — раздел механики, описывающий механическое движение тел без рассмотрения причин, из-за которых происходит движение.

Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.

Для описания движения нужна система отсчета, относительно которой мы будем описывать движение.

Система отсчета — это система координат, связанная с телом отсчета и прибор для измерения времени.

Тело отсчета — это тело, относительно которого рассматривают положение других тел.

Материальная точка — это тело, размеры которого можно не учитывать при решении задачи.

Траектория — это мысленная линия в пространстве, которую при движении описывает материальная точка.

Траектория движения делится на два типа:

  • прямолинейное движение. Это прямой отрезок траектории;
  • криволинейное движение. Это кривой отрезок траектории.

Путь — это длина траектории, которую описывает тело или материальная точка за данный промежуток времени.

Перемещение S → — это вектор, соединяющий начальное положение тела или материальной точки с ее конечным положением.

Скорость — это векторная физическая величина, характеризующаяся направлением и быстротой перемещения материальной точки.

В международной системе единиц (СИ) единица измерения скорости обозначается как метр в секунду ( м с ) .

На практике часто используют внесистемную единицу измерения скорости. Например: километр в час ( к м ч ) .

Скорость принято записывать буквой ϑ , в СИ она обозначается как м с .

Как писалось выше, скорость равна отношению пути S ко времени t ( ϑ = S t ) .

Определение средней скорости

Определение: средняя скорость t ( ϑ = S t ) . – это физическая величина, равная отношению вектора всего пройденного пути к затраченному на это движение промежутку времени.

Рассчитать среднюю скорость можно по следующей формуле:

Определение средней путевой скорости

Средняя путевая скорость — это отношение пути или длины траектории, пройденного телом, к интервалу времени, за которое этот путь был пройден.

Формула средней путевой скорости выглядит так:

ϑ с р . п . = ∆ S ∆ t

Примеры решения задач

Автомобиль первый час ехал со скоростью 100 км/ч, после чего сделал остановку. Следующие два часа автомобиль ехал со скоростью 90 км/ч, а затем два часа — со скоростью 80 км/ч. Найдите среднюю скорость на протяжении всего пути автомобиля.

В условии сказано о трех участках пути.

ϑ с р → = S 1 → + S 2 → + S 3 → t 1 + t 2 + t 3

Участки пути мы можем вычислить и посчитать следующим образом:

Первый участок пути составил 1∙100 = 100 километров.

Второй участок пути составил 2∙90 = 180 километров.

Третий участок пути составил 2∙80 = 160 километров.

ϑ с р = 100 + 180 + 160 1 + 2 + 2 = 440 5 = 88 к м ч

Ответ: средняя скорость составляет 88 км/ч.

Автомобиль проехал по дороге расстояние 140 км за время, равное 2 часам, затем сделал остановку. После остановки автомобиль проехал 60 км за 3 часа. Какова средняя скорость автомобиля за весь путь?

ϑ с р → = ∆ S → ∆ t ϑ с р → = S 1 → + S 2 → t 1 + t 2 ϑ с р → = 140 + 60 2 + 3 = 40 к м ч

Ответ: средняя скорость автомобиля составляет 40 км/ч.

Человек занимается бегом и за 2 часа пробежал 5 км, а за следующий час пробежал 3 км. Определите среднюю скорость бегуна.

Искать среднюю скорость будем как во второй задаче.

ϑ с р → = ∆ S → ∆ t ϑ с р → = S 1 → + S 2 → t 1 + t 2 ϑ с р → = 5 + 3 2 + 1 = 2 , 6 к м ч

Источник

Неравномерное прямолинейное движение. Средняя скорость

п.1. График скорости при неравномерном прямолинейном движении

Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.

Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.

Читайте также:  Способ ведения предпринимательской деятельности

Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_=9\ \text<км/ч>,\ \ v_=3\ \text <км/ч>$$ Построим график скорости для этого случая:

п.2. Как найти путь и перемещение по графику скорости?

Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком \(\triangle t\) на оси \(t\) (см. §8 данного справочника).

В таком случае, путь велосипедиста в нашем примере:
\begin s=v_\cdot \triangle t_1+v_\cdot \triangle t_2\\ s=9\cdot 0,5+3\cdot 0,5=4,5+1,5=6\ \text <(км)>\end Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км.
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.

Если принять город A за начало отсчета с \(x_0=0\), то координата велосипедиста в конце пути: $$ x_<к>=x_0+s=0+6=6\ \text <(км)>$$ Перемещение по оси ОХ: \(\triangle x=x_<к>-x_0=6\ \text<(км)>\).

Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_=9\ \text<км/ч>,\ \ v_=-3\ \text <км/ч>$$ Построим график скорости для этого случая:

Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная \(v_x(t)\) с осью \(t\): \begin x=v_\cdot \triangle t_1+|v_|\cdot\triangle t_2\\ s=9\cdot 0,5+3\cdot 0,5=4,5+1,5=6\ \text <(км)>\end
Если мы учтем знак \(v_\) и уберем модуль, то получим величину перемещения по оси ОХ: \begin \triangle x=v_\cdot \triangle t_1+v_\cdot \triangle t_2\\ \triangle x=9\cdot 0,5-3\cdot 0,5=4,5-1,5=3\ \text <(км)>\end Сначала велосипедист проехал 4,5 км, а затем прошел 1,5 км в обратном направлении.
Конечная координата: $$ x_<к>=x_0+\triangle x=0+3=3\ \text <(км)>$$
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.

п.3. Средняя скорость и средняя путевая скорость

В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: \begin |\overrightarrow>|=\frac<|\overrightarrow|>=\frac<\triangle x>=\frac 61=6\ \text<(км/ч)>\\ v_=\frac st=\frac 61=6\ \text <(км/ч)>\end Величина средней скорости равна средней путевой скорости.

А вот для случая, когда велосипедист развернулся и пошел обратно: \begin |\overrightarrow>|=\frac<|\overrightarrow|>=\frac<\triangle x>=\frac 31=3\ \text<(км/ч)>\\ v_=\frac st=\frac 61=6\ \text <(км/ч)>\end Величина средней скорости меньше средней путевой скорости.

п.4. Задачи

Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.

a)

Все движение можно разделить на три участка с постоянной скоростью:
\begin \triangle t_1=3-0=3\ c,\ \ v_=5\ \text<м/с>\\ \triangle t_2=5-3=2\ c,\ \ v_=1\ \text<м/с>\\ \triangle t_3=7-5=2\ c,\ \ v_=2\ \text<м/с>\\ \end Общий путь: \begin s=|v_|\cdot \triangle t_1+|v_|\cdot \triangle t_2+|v_|\cdot \triangle t_3\\ s=5\cdot 3+1\cdot 2+2\cdot 2=21\ \text <(м)>\end Все проекции скоростей положительны, тело двигалось в одном направлении, общее перемещение равно общему пути: \(\triangle x=s=21\) (м)
Общее время: \(t=\triangle t_1+\triangle t_2+\triangle t_3=3+2+2=7\) (с)
Величина средней скорости равна средней путевой скорости: $$ |\overrightarrow>|=v_=\frac st=\frac<21><7>=3\ \text <(м/с)>$$ Ответ: \(|\overrightarrow>|=v_=3\ \text<(м/с)>\)

б)

Все движение можно разделить на три участка с постоянной скоростью:
\begin \triangle t_1=3-0=3\ c,\ \ v_=5\ \text<м/с>\\ \triangle t_2=5-3=2\ c,\ \ v_=-2\ \text<м/с>\\ \triangle t_3=7-5=2\ c,\ \ v_=1\ \text<м/с>\\ \end Общий путь: \begin s=|v_|\cdot \triangle t_1+|v_|\cdot \triangle t_2+|v_|\cdot \triangle t_3\\ s=5\cdot 3+2\cdot 2+1\cdot 2=21\ \text <(м)>\end Проекции скоростей имеют разные знаки, тело двигалось вперед и назад.
Общее перемещение будет меньше общего пути: \begin \triangle x=v_\cdot \triangle t_1+v_\cdot \triangle t_2+v_\cdot \triangle t_3\\ \triangle x=5\cdot 3-2\cdot 2+1\cdot 2=13\ \text <(м)>\end Общее время: \(t=\triangle t_1+\triangle t_2+\triangle t_3=3+2+2=7\) (c)
Величина средней скорости: $$ |\overrightarrow>|=\frac<\triangle x>=\frac<13><7>\approx 1,86\ \text <(м/с)>$$ Средняя путевая скорость: $$ v_=\frac st=\frac<21><7>=3\ \text <(м/с)>$$ Ответ: \(|\overrightarrow>|\approx 1,86\ \text<(м/с)>;\ \ v_=3\ \text<(м/с)>\)

Читайте также:  Проект умножение китайским способом

Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.

Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: \(v_=\frac st\), где \(s\) — весь путь, \(t\) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 40 \(\frac<2d><40>=\frac<20>\) \(2d\)
2й участок 80 \(\frac<80>\) \(d\)
Сумма \(t=\frac<20>+\frac<80>\) \(s=2d+d=3d\)

Упростим сумму дробей: $$ t=\frac<20>+\frac<80>=\frac<4d+d><80>=\frac<5d><80>=\frac <16>$$ Получаем: $$ v_=\frac st=\frac<3d>=3\cdot 16=48\ \text <(км/ч)>$$
Ответ: 48 км/ч

Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.

Величина средней скорости равна средней путевой скорости:
\(v_=\frac st\), где \(s\) — весь путь, \(t\) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок 90 \(\frac<2\cdot 90>=\frac<180>\) \(\frac s2\)
2й участок 30 \(\frac<2\cdot 30>=\frac<60>\) \(\frac s2\)
Сумма \(t=\frac<180>+\frac<60>\) \(s\)

Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.

Величина средней скорости равна средней путевой скорости:
\(v_=\frac st\), где \(s\) — весь путь, \(t\) — все время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок \(\frac<4t>\) \(4t\) \(d\)
2й участок \(\frac<4d>\) \(t\) \(4d\)
3й участок \(\frac<45d><20t>\) \(20t\) \(45d\)
Сумма \(25t\) \(50d\)

По условию средняя скорость: $$ v_=\frac st=\frac<50d><25t>=2\cdot \frac dt=32\Rightarrow \frac dt=16 $$ Получаем: \begin v_1=\frac<4t>=\frac<16><4>=4\ \text<(км/ч)>\\ v_2=\frac<4d>=4\cdot 16=64\ \text<(км/ч)>\\ v_3=\frac<9d><4t>=\frac<9><4>\cdot 16=36\ \text <(км/ч)>\end
Ответ: 4 км/ч, 64 км/ч и 36 км/ч

Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?

Пусть \(v\) — скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость \(v_\) и сравним ее со скоростью \(v\).
Если \(v_\gt v\), то турист выиграл время.
Заполним таблицу:

Скорость, км/ч Время, ч Расстояние, км
1й участок \(10v\) \(\frac<2\cdot 10v>=\frac<20v>\) \(\frac s2\)
2й участок \(\frac<2>\) \(\frac<2\cdot v/2>=\frac sv\) \(\frac s2\)
Сумма \(t=\frac<20v>+\frac sv\) \(s\)

Упростим сумму дробей: $$ t=\frac<20v>+\frac sv=\frac sv\left(\frac<1><20>+1\right)=\frac<21><20>\cdot \frac sv $$ Средняя скорость: $$ v_=\frac<\frac<21><20>\cdot\frac sv>=\frac<20><21>v\gt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет

п.5. Лабораторная работа №3. Определение средней скорости движения тела

Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.

Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.

Длина участков измеряется с помощью мерной ленты с ценой деления \(\triangle=1\) см,
инструментальная погрешность равна: \(d=\frac<\triangle><2>=0,5\) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: \(\triangle s_1=\triangle s_2=d=0,5\) см
Погрешность суммы двух длин: \(\triangle(s_1+s_2)= \triangle s_1+\triangle s_2=2d=1\) см

Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: \(\triangle(t_1+t_2)=\triangle t_1+\triangle t_2\)

Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ \delta_>=\delta_+\delta_ $$ Абсолютная погрешность определения средней скорости: $$ \triangle v_=v_\cdot \delta_> $$

Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.

Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.

3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин \(\delta_=\frac<\triangle(s_1+s_2)>\)
5. Проведите серии по 5 экспериментов для определения \(t_1\) и \(t_2\) с помощью секундомера.
6. Найдите \(\triangle t_1,\ \triangle t_2, \ \triangle(t_1+t_2),\ \delta_\)
7. По результатам измерений и вычислений найдите \(v_,\ \delta_>\) и \(\triangle v_\).
8. Сделайте выводы о проделанной работе.

Результаты измерений и вычислений

1) Измерение длин
Цена деления мерной ленты \(\triangle =1\) см
Инструментальная погрешность мерной ленты \(d=\frac<\triangle><2>=0,5\) см
Результаты измерений:
\(s_1=112\) cм
\(s_2=208\) cм
Сумма длин участков: \(s_1+s_2=112+208=320\) (см)
Абсолютная погрешность суммы: \(\triangle (s_1+s_2)=\triangle s_1+\triangle s_2=2d=1\) см
Относительная погрешность суммы: $$ \delta_=\frac<\triangle (s_1+s_2)>=\frac<1><320>=0,3125% $$

2) Измерение времени
Цена деления секундомера \(\triangle =0,2\) с
Инструментальная погрешность секундомера \(d=\frac<\triangle><2>=0,1\) с

Время движения по наклонному желобу

№ опыта 1 2 3 4 5 Сумма
\(t_1\) c 1,5 1,6 1,5 1,4 1,4 7,4
\(\triangle\) c 0,02 0,12 0,02 0,08 0,08 0,32

Найдем среднее время спуска с наклонного желоба: $$ t_1=\frac<1,5+1,6+1,5+1,4+1,4><5>=\frac<7,4><5>=1,48\ (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от \(t_1\): $$ \triangle_1=|1,5-1,48|=0,02;\ \triangle_2=|1,6-1,48|=1,02\ \text <и т.д.>$$ Среднее абсолютное отклонение: $$ \triangle_=\frac<0,02+0,12+0,02+0,08+0,08><5>=\frac<0,32><5>=0,064\ \text $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ \triangle t_1=max\left\\right\>=max\left\<0,1;0,064\right\>=0,1\ \text $$ Округляем полученное значение времени до десятых. \begin t_1=(1,5\pm 0,1)\ \text\\ \delta_=\frac<0,1><1,5>=\frac<1><15>\approx 6,7\text <%>\end Время движения по горизонтальному желобу

№ опыта 1 2 3 4 5 Сумма
\(t_2\) c 2,3 2,4 2,2 2,2 2,4 11,5
\(\triangle\) c 0 0,1 0,1 0,1 0,1 0,4

Найдем среднее время движения по горизонтали: $$ t_2=\frac<2,3+2,4+2,2+2,2+2,4><5>=\frac<11,5><5>=2,3\ (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от \(t_2\): $$ \triangle_1=|2,3-2,3|=0;\ \triangle_2=|2,4-2,3|=0,1\ \text <и т.д.>$$ Среднее абсолютное отклонение: $$ \triangle_=\frac<0+0,1+0,1+0,1+0,1><5>=\frac<0,4><5>=0,08\ \text $$ Среднее абсолютное отклонение меньше инструментальной погрешности, поэтому абсолютная погрешность измерений: $$ \triangle t_2=max\left\\right\>=max\left\<0,1;0,08\right\>=0,1\ \text $$ Получаем: \begin t_2=(2,3\pm 0,1)\ \text\\ \delta_=\frac<0,1><2,3>=\frac<1><23>\approx 4,4\text <%>\end

3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8\ \text <(c)>$$ Абсолютная погрешность суммы: $$ \triangle(t_1+t_2)=\triangle t_1+\triangle t_2=0,1+0,1=0,2\ \text <(c)>$$ Относительная погрешность суммы: $$ \delta_=\frac<\triangle (t_1+t_2)>=\frac<0,2><3,8>=\frac<1><19>\approx 5,3\text <%>$$

4) Расчет средней скорости $$ v_=\frac=\frac<320><3,8>\approx 84,2\ \left(\frac<\text<см>><\text>\right) $$ Относительная ошибка частного: $$ \delta_>=\delta_+\delta_=\frac<1><320>+\frac<1><19>\approx 0,003125+0,0526\approx 0,0557\approx 0,056=5,6\text <%>$$ (оставляем две значащие цифры).
Абсолютная ошибка: $$ v_=v_\cdot\delta_>=84,2\cdot 0,056\approx 4,7\ \left(\frac<\text<см>><\text>\right) $$ Получаем: \begin v_=(84,2\pm 4,7)\ \text<см/с>\\ \delta_>=5,6\text <%>\end

Выводы
На основании проделанной работы можно сделать следующие выводы.

Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: \begin v_=(84,2\pm 4,7)\ \text<см/с>\\ \delta_>=5,6\text <%>\end

Источник

Читайте также:  Залог как способы обеспечения исполнения договора
Оцените статью
Разные способы