- Способы нахождения средней скорости в физике
- Основные понятия и законы кинематики
- Определение средней скорости
- Определение средней путевой скорости
- Примеры решения задач
- Неравномерное прямолинейное движение. Средняя скорость
- п.1. График скорости при неравномерном прямолинейном движении
- п.2. Как найти путь и перемещение по графику скорости?
- п.3. Средняя скорость и средняя путевая скорость
- п.4. Задачи
- п.5. Лабораторная работа №3. Определение средней скорости движения тела
Способы нахождения средней скорости в физике
Основные понятия и законы кинематики
Кинематика — раздел механики, описывающий механическое движение тел без рассмотрения причин, из-за которых происходит движение.
Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.
Для описания движения нужна система отсчета, относительно которой мы будем описывать движение.
Система отсчета — это система координат, связанная с телом отсчета и прибор для измерения времени.
Тело отсчета — это тело, относительно которого рассматривают положение других тел.
Материальная точка — это тело, размеры которого можно не учитывать при решении задачи.
Траектория — это мысленная линия в пространстве, которую при движении описывает материальная точка.
Траектория движения делится на два типа:
- прямолинейное движение. Это прямой отрезок траектории;
- криволинейное движение. Это кривой отрезок траектории.
Путь — это длина траектории, которую описывает тело или материальная точка за данный промежуток времени.
Перемещение S → — это вектор, соединяющий начальное положение тела или материальной точки с ее конечным положением.
Скорость — это векторная физическая величина, характеризующаяся направлением и быстротой перемещения материальной точки.
В международной системе единиц (СИ) единица измерения скорости обозначается как метр в секунду ( м с ) .
На практике часто используют внесистемную единицу измерения скорости. Например: километр в час ( к м ч ) .
Скорость принято записывать буквой ϑ , в СИ она обозначается как м с .
Как писалось выше, скорость равна отношению пути S ко времени t ( ϑ = S t ) .
Определение средней скорости
Определение: средняя скорость t ( ϑ = S t ) . – это физическая величина, равная отношению вектора всего пройденного пути к затраченному на это движение промежутку времени.
Рассчитать среднюю скорость можно по следующей формуле:
Определение средней путевой скорости
Средняя путевая скорость — это отношение пути или длины траектории, пройденного телом, к интервалу времени, за которое этот путь был пройден.
Формула средней путевой скорости выглядит так:
ϑ с р . п . = ∆ S ∆ t
Примеры решения задач
Автомобиль первый час ехал со скоростью 100 км/ч, после чего сделал остановку. Следующие два часа автомобиль ехал со скоростью 90 км/ч, а затем два часа — со скоростью 80 км/ч. Найдите среднюю скорость на протяжении всего пути автомобиля.
В условии сказано о трех участках пути.
ϑ с р → = S 1 → + S 2 → + S 3 → t 1 + t 2 + t 3
Участки пути мы можем вычислить и посчитать следующим образом:
Первый участок пути составил 1∙100 = 100 километров.
Второй участок пути составил 2∙90 = 180 километров.
Третий участок пути составил 2∙80 = 160 километров.
ϑ с р = 100 + 180 + 160 1 + 2 + 2 = 440 5 = 88 к м ч
Ответ: средняя скорость составляет 88 км/ч.
Автомобиль проехал по дороге расстояние 140 км за время, равное 2 часам, затем сделал остановку. После остановки автомобиль проехал 60 км за 3 часа. Какова средняя скорость автомобиля за весь путь?
ϑ с р → = ∆ S → ∆ t ϑ с р → = S 1 → + S 2 → t 1 + t 2 ϑ с р → = 140 + 60 2 + 3 = 40 к м ч
Ответ: средняя скорость автомобиля составляет 40 км/ч.
Человек занимается бегом и за 2 часа пробежал 5 км, а за следующий час пробежал 3 км. Определите среднюю скорость бегуна.
Искать среднюю скорость будем как во второй задаче.
ϑ с р → = ∆ S → ∆ t ϑ с р → = S 1 → + S 2 → t 1 + t 2 ϑ с р → = 5 + 3 2 + 1 = 2 , 6 к м ч
Источник
Неравномерное прямолинейное движение. Средняя скорость
п.1. График скорости при неравномерном прямолинейном движении
Прямолинейное и равномерное движение возможно лишь на участке пути.
Любое тело со временем меняет свою скорость, как по величине, так и по направлению.
Для описания неравномерного движения его можно разбить на участки, на которых скорость постоянна, и свести задачу к уже известному нам равномерному прямолинейному движению.
Например, пусть велосипедист добрался из города A в город B за 1 час. Первые полчаса он ехал со скоростью 9 км/ч, а потом проколол шину, и вторые полчаса шел пешком со скоростью 3 км/ч.
Направим ось ОХ также от A к B и получим значения проекций скоростей: $$ v_
п.2. Как найти путь и перемещение по графику скорости?
Мы уже знаем, что путь равен площади прямоугольника, который образуется между отрезком графика скорости и отрезком \(\triangle t\) на оси \(t\) (см. §8 данного справочника).
В таком случае, путь велосипедиста в нашем примере:
\begin
Общий путь велосипедиста равен 6 км. Расстояние между городами 6 км.
Если принять город A за начало отсчета с \(x_0=0\), то координата велосипедиста в конце пути: $$ x_<к>=x_0+s=0+6=6\ \text <(км)>$$ Перемещение по оси ОХ: \(\triangle x=x_<к>-x_0=6\ \text<(км)>\).
Теперь рассмотрим другую ситуацию. Пусть велосипедист выехал из A в B и двигался со скоростью 9 км/ч в течение получаса. Но, после того как проколол шину, он развернулся и пошел пешком назад в A. Где будет находиться велосипедист через полчаса после разворота?
Снова направим ось ОХ от A к B и получим значения проекций скоростей: $$ v_
Путь велосипедиста по-прежнему будет равен сумме площадей прямоугольников, которые образует ломаная \(v_x(t)\) с осью \(t\): \begin
Если мы учтем знак \(v_
Конечная координата: $$ x_<к>=x_0+\triangle x=0+3=3\ \text <(км)>$$
Ответ на вопрос задачи найден. Через полчаса после разворота велосипедист будет находиться в точке D в 3 км от города A.
п.3. Средняя скорость и средняя путевая скорость
В нашем примере с велосипедистом, который все время двигался в одну сторону и дошел до города B, получаем: \begin
А вот для случая, когда велосипедист развернулся и пошел обратно: \begin
п.4. Задачи
Задача 1. По графику скоростей найдите среднюю скорость и среднюю путевую скорость движения.
a)
Все движение можно разделить на три участка с постоянной скоростью:
\begin
Общее время: \(t=\triangle t_1+\triangle t_2+\triangle t_3=3+2+2=7\) (с)
Величина средней скорости равна средней путевой скорости: $$ |\overrightarrow
б)
Все движение можно разделить на три участка с постоянной скоростью:
\begin
Общее перемещение будет меньше общего пути: \begin
Величина средней скорости: $$ |\overrightarrow
Задача 2. Мотоциклист проехал расстояние между двумя пунктами со скоростью 40 км/ч. Потом увеличил скорость до 80 км/ч и проехал расстояние в два раза меньше. Найдите среднюю скорость мотоциклиста за все время движения.
Мотоциклист двигался все время в одном направлении, величина средней скорости равна средней путевой скорости: \(v_
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | 40 | \(\frac<2d><40>=\frac | \(2d\) |
2й участок | 80 | \(\frac | \(d\) |
Сумма | — | \(t=\frac | \(s=2d+d=3d\) |
Упростим сумму дробей: $$ t=\frac
Ответ: 48 км/ч
Задача 3. Автомобиль проехал первую половину пути по шоссе со скоростью 90 км/ч, а вторую половину – по грунтовой дороге со скоростью 30 км/ч. Найдите среднюю скорость автомобиля.
Величина средней скорости равна средней путевой скорости:
\(v_
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | 90 | \(\frac | \(\frac s2\) |
2й участок | 30 | \(\frac | \(\frac s2\) |
Сумма | — | \(t=\frac | \(s\) |
Задача 4*. Туристы прошли по маршруту со средней скоростью 32 км/ч. Маршрут был разделен на три участка, первый участок преодолевался пешком, второй – на автобусе, третий – на катере. Найдите скорость на каждом участке, если длины этих участков относятся как 1:4:45, а соответствующие интервалы времени как 4:1:20.
Величина средней скорости равна средней путевой скорости:
\(v_
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | \(\frac | \(4t\) | \(d\) |
2й участок | \(\frac<4d> | \(t\) | \(4d\) |
3й участок | \(\frac<45d><20t>\) | \(20t\) | \(45d\) |
Сумма | — | \(25t\) | \(50d\) |
По условию средняя скорость: $$ v_
Ответ: 4 км/ч, 64 км/ч и 36 км/ч
Задача 5*. Первую половину маршрута турист проехал на попутном автомобиле в 10 раз быстрее по сравнению с ходьбой пешком, а вторую половину – на попутном возу в 2 раза медленней. Сэкономил ли турист время на всем маршруте по сравнению с ходьбой пешком?
Пусть \(v\) — скорость туриста при ходьбе пешком.
Найдем среднюю путевую скорость \(v_
Если \(v_
Заполним таблицу:
Скорость, км/ч | Время, ч | Расстояние, км | |
1й участок | \(10v\) | \(\frac | \(\frac s2\) |
2й участок | \(\frac | \(\frac | \(\frac s2\) |
Сумма | — | \(t=\frac | \(s\) |
Упростим сумму дробей: $$ t=\frac<20v>+\frac sv=\frac sv\left(\frac<1><20>+1\right)=\frac<21><20>\cdot \frac sv $$ Средняя скорость: $$ v_<\frac<21><20>\cdot\frac sv>=\frac<20><21>v\gt v $$Средняя скорость поездки оказалась меньше пешей скорости туриста.
Значит, он не выиграл по времени.
Ответ: нет
п.5. Лабораторная работа №3. Определение средней скорости движения тела
Цель работы
Научиться определять среднюю скорость движения тела по данным измерений на разных участках. Научиться вычислять абсолютные и относительные погрешности при подстановке данных измерений в формулы.
Теоретические сведения
В лабораторной работе изучается движение тела (шарика) по двум участкам (желобам) с различной скоростью.
Длина участков измеряется с помощью мерной ленты с ценой деления \(\triangle=1\) см,
инструментальная погрешность равна: \(d=\frac<\triangle><2>=0,5\) см
Абсолютная погрешность измерений при работе с мерной лентой равна инструментальной погрешности, поэтому: \(\triangle s_1=\triangle s_2=d=0,5\) см
Погрешность суммы двух длин: \(\triangle(s_1+s_2)= \triangle s_1+\triangle s_2=2d=1\) см
Измерение времени на каждом участке проводится в сериях их 5 измерений по методике, описанной в Лабораторной работе №2 (см. §4 данного справочника).
Погрешность суммы двух измерений: \(\triangle(t_1+t_2)=\triangle t_1+\triangle t_2\)
Относительная погрешность частного равна сумме относительных погрешностей делимого и делителя: $$ \delta_
Приборы и материалы
Два желоба (не менее 1 м каждый), шарик, мерная лента, секундомер.
Ход работы
1. Ознакомьтесь с теоретической частью работы, выпишите необходимые формулы.
2. Соберите установку, как показано на рисунке. Установите один желоб под углом, другой – горизонтально, закрепите, поставьте в конце горизонтального участка упор. Подберите длину желобов и наклон так, чтобы движение по каждому участку было не менее 1 с.
3. Измерьте фактическую длину каждого участка движения в готовой установке с помощью мерной ленты.
4. Найдите относительную погрешность суммы двух длин \(\delta_
5. Проведите серии по 5 экспериментов для определения \(t_1\) и \(t_2\) с помощью секундомера.
6. Найдите \(\triangle t_1,\ \triangle t_2, \ \triangle(t_1+t_2),\ \delta_
7. По результатам измерений и вычислений найдите \(v_
8. Сделайте выводы о проделанной работе.
Результаты измерений и вычислений
1) Измерение длин
Цена деления мерной ленты \(\triangle =1\) см
Инструментальная погрешность мерной ленты \(d=\frac<\triangle><2>=0,5\) см
Результаты измерений:
\(s_1=112\) cм
\(s_2=208\) cм
Сумма длин участков: \(s_1+s_2=112+208=320\) (см)
Абсолютная погрешность суммы: \(\triangle (s_1+s_2)=\triangle s_1+\triangle s_2=2d=1\) см
Относительная погрешность суммы: $$ \delta_
2) Измерение времени
Цена деления секундомера \(\triangle =0,2\) с
Инструментальная погрешность секундомера \(d=\frac<\triangle><2>=0,1\) с
Время движения по наклонному желобу
№ опыта | 1 | 2 | 3 | 4 | 5 | Сумма |
\(t_1\) c | 1,5 | 1,6 | 1,5 | 1,4 | 1,4 | 7,4 |
\(\triangle\) c | 0,02 | 0,12 | 0,02 | 0,08 | 0,08 | 0,32 |
Найдем среднее время спуска с наклонного желоба: $$ t_1=\frac<1,5+1,6+1,5+1,4+1,4><5>=\frac<7,4><5>=1,48\ (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от \(t_1\): $$ \triangle_1=|1,5-1,48|=0,02;\ \triangle_2=|1,6-1,48|=1,02\ \text <и т.д.>$$ Среднее абсолютное отклонение: $$ \triangle_
№ опыта | 1 | 2 | 3 | 4 | 5 | Сумма |
\(t_2\) c | 2,3 | 2,4 | 2,2 | 2,2 | 2,4 | 11,5 |
\(\triangle\) c | 0 | 0,1 | 0,1 | 0,1 | 0,1 | 0,4 |
Найдем среднее время движения по горизонтали: $$ t_2=\frac<2,3+2,4+2,2+2,2+2,4><5>=\frac<11,5><5>=2,3\ (c) $$ Принимаем среднее время за истинное значение измеряемой величины.
Найдем абсолютные отклонения каждого измерения от \(t_2\): $$ \triangle_1=|2,3-2,3|=0;\ \triangle_2=|2,4-2,3|=0,1\ \text <и т.д.>$$ Среднее абсолютное отклонение: $$ \triangle_
3) Расчет погрешности суммы интервалов времени
Сумма интервалов времени: $$ t_1+t_2=1,5+2,3=3,8\ \text <(c)>$$ Абсолютная погрешность суммы: $$ \triangle(t_1+t_2)=\triangle t_1+\triangle t_2=0,1+0,1=0,2\ \text <(c)>$$ Относительная погрешность суммы: $$ \delta_
4) Расчет средней скорости $$ v_
Абсолютная ошибка: $$ v_
Выводы
На основании проделанной работы можно сделать следующие выводы.
Измерения длин проводились с помощью мерной ленты. Ошибка измерений равна инструментальной ошибке 0,5 см.
Измерения времени проводились с помощью секундомера. По результатам серий экспериментов ошибка была принята равной инструментальной 0,1 с.
Получена величина средней скорости: \begin
Источник