- Голофитный способ питания
- См. также
- Литература
- Ссылки
- Полезное
- Смотреть что такое «Голофитный способ питания» в других словарях:
- Голофитный способ питания
- Связанные понятия
- Питание бактерий
- Содержание:
- Способы поступления питательных веществ
- Гетеротрофные бактерии: культура Erwinia amylovora
- Источники углерода
- Источники энергии
- Хемоорганотрофные бактерии
- Природа доноров электронов
- Источники углерода, энергии и доноров электронов
- Голофитный способ питания бактерий
- Питание бактерий
- Вода. Значимость воды для бактерий.
Голофитный способ питания
Голофитный способ питания (от др.-греч. ολο — «весь» и φυτóν — «растение») или осмотрофный (от др.-греч. ὄσμος — «толчок, давление» и τροφή — «питание») — питание без захвата твёрдых пищевых частиц посредством транспорта (пассивного — осмоса, или активного) растворённых питательных веществ через поверхностные структуры клетки. Один из видов автотрофного питания. Данный способ характерен для фотосинтезирующих растений, грибов и большинства микроорганизмов (исключая гетеротрофных простейших). Противопоставляется голозойному способу.
Использование микроорганизмами нерастворимых высокомолекулярных веществ (белков, целлюлозы и других) связано с процессом выделения в приклеточную среду специфических ферментов, разрушающих субстрат до низкомолекулярных растворимых соединений (аминокислот, сахаров и других).
См. также
- Пиноцитоз — активный захват капель жидкости мембраной клетки.
Литература
- Биологический энциклопедический словарь / глав. ред. М. С. Гиляров. — М.: Советская энциклопедия, 1986. — С. 150.
- P.A. Jumars, J. W. Deming, P.H. Hill, L. Karp-Boss, P. L. Yager and W. B. Dade (1993). «Physical constraints on marine osmotrophy in an optimal foraging context». Marine Microbial Food Webs7 (2): 121–159.
- McMenamin, M. (1993). «Osmotrophy in fossil protoctists and early animals». Invertebr. Repro. Develop.23: 165–166.
Ссылки
- Osmotrophy. Glossary of Fishery, Oceanographic, Phylogenetic and other Biological Terms. (недоступная ссылка — история) Проверено 11 октября 2005. (англ.)
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Голофитный способ питания» в других словарях:
ГОЛОФИТНЫЙ СПОСОБ ПИТАНИЯ — (от греч. holos весь, целый и . фит), характерное для растений и грибов питание без захвата твёрдых пищевых частиц посредством транспорта растворённых веществ через поверхностные структуры клетки. Противопоставляется голозойному способу питания … Биологический энциклопедический словарь
голофитный тип питания — ОСМОТРОФНЫЙ ТИП ПИТАНИЯ – «растительный» способ питания, при котором организм поглощает растворимые питательные вещества. Данный тип питания характерен для растений, грибов и большинства микроорганизмов (исключение составляют простейшие).… … Словарь микробиологии
грибы — (Fungi, Mycota) – большая группа эукариот, включающая, по данным разных авторов, от 100000 до 250000 видов. Традиционно Г. относили к низшим растениям. Г. отличаются от растений гетеротрофным способом питания. Хитиновые оболочки клеток… … Словарь микробиологии
PROTOZOA — PROTOZOA, простейшие (от греч. рго tos первый и zoon животное), тип животного царства, представители к рого состоят из одной в различной степени диференцированной клетки. Первоначально (17 18 вв.) и некоторое время/после введения в науку термина… … Большая медицинская энциклопедия
ПИТАНИЕ — совокупность процессов, включающих поступление в организм, переваривание, всасывание и усвоение им пищ. вешеств; составная часть обмена веществ. Благодаря П. организмы получают разл. химич. соединения, к рые используются для роста,… … Биологический энциклопедический словарь
Хищничество — Запрос «Хищник» перенаправляется сюда; см. также другие значения. Запрос «Хищники» перенаправляется сюда; см. также другие значения … Википедия
Источник
Голофитный способ питания
- Голофитный способ питания клетки — питание без захвата твёрдых пищевых частиц — посредством транспорта (пассивного (осмоса) или активного) растворённых питательных веществ через поверхностные структуры клетки. Может использоваться как при гетеротрофном, так и при автотрофном типе питания. Характерно для клеток фотосинтезирующих растений, клеток грибов, клеток животных и большинства микроорганизмов (исключая гетеротрофных простейших). Противопоставляется голозойному способу.
Осмотрофный способ питания клетки аналогичен голофитному, но с предварительным внеклеточным расщеплением. Использование микроорганизмами и клетками грибов нерастворимых высокомолекулярных веществ (белков, целлюлозы и других) связано с выделением в приклеточную среду специфических ферментов (внешнее пищеварение), разрушающих субстрат до низкомолекулярных растворимых соединений (аминокислот, сахаров и других).
Связанные понятия
Метаболи́зм (от греч. «превращение», «изменение») или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Бактериа́льная кле́тка обычно устроена наиболее просто по сравнению с клетками других живых организмов. Бактериальные клетки часто окружает капсула, которая служит защитой от внешней среды. Для многих свободноживущих бактерий характерно наличие жгутиков для передвижения, а также ворсинок.
Фитазы (мио-инозитол-1,2,3,4,5,6-гексакисфосфат-фосфогидролазы) – группа ферментов, относящихся к подклассу фосфатаз, осуществляющих высвобождение хотя бы одного фосфат-иона из молекулы фитиновой кислоты. В результате гидролиза фитиновой кислоты образуются низшие, т. е. содержащие менее шести остатков фосфорной кислоты, инозитолфосфаты, инозитол и неорганический фосфат, а также высвобождаются связанные с фитатами катионы.
Белки — природные линейные гетерополимеры, состоящие из мономеров — аминокислот. Главная особенность белков как молекулярных машин — способность специфически связывать другие белки, иные биополимеры и малые молекулы и взаимодействовать с ними. Благодаря этой способности белки выполняют большинство функций клеток и организмов. Одна из важных функций белков — защитная. Обычно к защитным белкам относят прежде всего белки, участвующие в иммунной защите организма. Однако многие другие.
Арабиногалактáн — полисахарид, входящий в состав камедей покрытосеменных и некоторых голосеменных (в особенности его много в камеди лиственницы), также является исключительным компонентом клеточной стенки микобактерий.
Источник
Питание бактерий
Питание бактерий – это процесс поглощения и усвоения бактериальной клеткой пластического материала и энергии в результате преобразовательных реакций [4] .
Питание является неотъемлемой функцией каждого живого организма. В процессе питания организм получает вещества, идущие на синтез клеточных структур и служащие источником энергии для всех процессов жизнедеятельности. Для питания микроорганизмов необходимы те же элементы, что и для животных, и растений. Первоочередные элементы питания – углерод, азот, кислород, водород, являющиеся основой всех органических веществ, которые входят в состав живой клетки как прокариоритеческих так и эукариоэтических организмов [5] .
Типы питания бактерий чрезвычайно разнообразны. Различаются они в зависимости от способа поступления питательных веществ бактериальной клетки, источников углерода и азота, способа получения энергии, природы доноров электронов [4] .
Содержание:
Способы поступления питательных веществ
По способам поступления питательных веществ бактерии подразделяются на:
- голофиты (греч. holos – полноценный и греч. phyticos – относящийся к растениям) – бактерии неспособные выделять в окружающую среду ферменты, расщепляющие субстраты, потребляют вещества только в растворенном, молекулярном виде;
- голозои (греч. holos – полноценный и греч. zoikos – относящийся к животным) – бактерии, обладающие комплексом ферментов, обеспечивающие внешнее питание – расщепление субстратов до молекул вне бактериальной клетки, после чего молекулы питательных веществ транспортируются внутрь бактерии[4] .
Гетеротрофные бактерии: культура Erwinia amylovora
Источники углерода
По источникам углерода различают:
- автотрофы (греч. autos– сам, trophe – пища) – бактерии, использующие в качестве источника углерода углекислый газ (CO2), из которого осуществляют синтез всех углеродосодержащих веществ;
- гетеротрофы (греч.geteros– другой, trophe– пища) – бактерии, использующие в качестве источника углерода различные органические вещества в молекулярной форме (многоатомные спирты, углеводы, жирные кислоты, аминокислоты) [4] .
Наибольшая степень гетеротрофности отмечается у прокариот, живущих только внутри других живых клеток, в частности хламидий и риккетсий [4] .
Источники энергии
В зависимости от используемых источников энергии бактерии подразделяют на два типа:
- фототрофы – бактерии способные использовать солнечную энергию;
- хемотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях [4] .
Хемоорганотрофные бактерии
Pectobacterium carotovorum ssp. carotovorum вытекают из тканей капусты [6] .
Природа доноров электронов
- литотрофы (греч. litos – камень) – бактерии, использующие в качестве доноров электронов неорганические вещества: водород (Н2), сероводород (Н2S), аммиак (NH3), серу (S), углекислый газ(CО2), ионы железа (Fe2+) и многие другие;
- органотрофы – бактерии, использующие в качестве донора электронов органические соединения (углеводы, аминокислоты) [4] .
В зависимости от источника энергии и природы донора электронов возможно четыре основных типа энергетического метаболизма: хемолитотрофия, хемоорганотрофия, фотолитотрофия, фотоорганотрофия. Таки образом, бактерии разделяют на:
- хемолитотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве доноров электронов неорганические вещества;
- хемоорганотрофы – бактерии, получающие энергию при окислительно-восстановительных реакциях и использующие в качестве донора электронов органические соединения;
- фотолитотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве доноров электронов неорганические вещества;
- фотоорганотрофы – бактерии, получающие энергию в результате фотосинтеза (солнечная энергия) и использующие в качестве донора электронов органические соединения [2] .
Источники углерода, энергии и доноров электронов
Каждый тип энергетического метаболизма осуществляется на базе различных биосинтетических способностей организма. Как отмечалось выше, прокариоты, прежде всего, делятся на автрофов и гетеротрофов. В последствие, те же микроорганизмы распределяются ещё по группам: фототрофы, хемотрофы, литотрофы, органотрофы [3] .
Следовательно, выделяется восемь сочетаний типов энергетического и конструктивного метаболизма, отражающие возможности способов питания прокариот:
Способы питания прокариот представлены в Таблице 1 [2] .
Всем перечисленным способам питания соответствуют реально существующие прокариоты. Однако число видов, относящихся к той или иной группе, далеко не одинаково. Большинство видов сосредоточено в группе с хемоорганогетеротрофным типом питания. В числе фотосинтезирующих прокариот (фототрофов) подавляющее число (все цианобактерии, большинство пурпурных и зеленых серобактерий) – фотолитотрофы [2] .
Кроме указанных восьми типов питания, отмечается существование миксотрофов – организмов, способных одновременно использовать различные возможности питания. Например, способные одновременно окислять органические и минеральные соединения или использующие в качестве источника углерода, как диоксид углерода, так и органические вещества [3] .
Источник
Голофитный способ питания бактерий
Жизнь бактерий, как и других живых существ, в упрощенном виде сводится к таким последовательным событиям: собственное воспроизведение — обеспечение жизненных функций -> воспроизведение потомства. Нормальная реализация этого круговорота жизни для любого вида бактерий возможна лишь при развитии адекватных ответных реакций на любые воздействия окружающей среды, что во многом обеспечивается генетической информацией организма.
Жизнь бактерий, равно как и всех живых существ, характеризуется ростом и размножением, то есть увеличением живой массы отдельной особи и популяции в целом за счет ассимиляции веществ, находящихся вне клетки. В данном аспекте нет никакой существенной разницы между питанием паразитической бактерии или автотрофной бактерии, использующей, подобно высшим растениям, углекислоту и минеральные вещества. Во всех случаях процесс питания сводится к усвоению экзогенных субстратов и превращению их (через каскад сложных реакций) в вещества, необходимые для нормальной жизнедеятельности бактерий.
Питание бактерий
Пищей принято называть любое вещество, которое, попав в организм, служит источником энергии или пластическим материалом для синтеза молекул, используемых для нужд организма. Большинство животных, включая человека, способно заглатывать и переваривать плотные частички пищи в основном за счёт их гидролиза. Подобный тип питания известен как голозойный, а организмы — голозои [от греч. hobs, полноценный, + zoikos, относящийся к животным]. Бактерии не способны захватывать твердофазные объекты, поэтому утилизируют питательные вещества в виде относительно простых молекул из водных растворов. Подобный тип питания, присущий также всем растениям, известен как голофитный, то есть бактерии — голофиты [от греч. hobs, полноценный, + phytikos, относящийся к растениям]. Тем не менее многие бактерии способны утилизировать твёрдую пищу с помощью так называемого внешнего питания, реализуемого вне клеток, то есть бактериям также присущ и голозойный тип питания.
Для этого они имеют мощный ферментативный потенциал, хотя иногда секретируемые ферменты могут полностью инактивироваться в результате разведения, под действием конвеционных токов и других факторов. Контакт пищеварительных ферментов с экзогенным субстратом приводит к образованию низкомолекулярных продуктов, проникающих через клеточную стенку в цитоплазму. Начиная с этого момента, процессы их усвоения (метаболизма) в растительных и животных клетках протекают удивительно сходно.
Клетки всех живых существ, от самых примитивных форм до высокоразвитых животных и растений, не только состоят из одних и тех же веществ, но и используют одни и те же механизмы для получения энергии и для роста. По сравнению с этим фундаментальным биохимическим единством существующие различия и отклонения кажутся незначительными.
Вода. Значимость воды для бактерий.
Вода составляет около 80% массы бактерий. Рост и развитие бактерий облигатно зависят от наличия воды, так как все химические реакции, протекающие в живых организмах, реализуются в водной среде. Для нормального роста и развития микроорганизмов необходимо присутствие воды в окружающей среде.
Для бактерий содержание воды в субстрате должно быть более 20%. Вода должна находиться в доступной форме: в жидкой фазе в интервале температур от 2 до 60 °С; этот интервал известен как биокинетическая зона. Хотя в химическом отношении вода весьма устойчива, продукты её ионизации — ионы Н+ и ОН» оказывают очень большое влияние на свойства практически всех компонентов клетки (белков, нуклеиновых кислит, липидов и т.д.). Так, каталитическая активность ферментов в значительной мере зависит от концентрации ионов Н+ и ОН».
Источник