- Лекция 7. Гидрометаллургия меди.
- Способы получения меди из руды и металлолома
- Особенности медных руд
- Стадии пирометаллургического производства меди
- Обогащение
- Обжиг
- Плавка на штейн
- Рафинирование с использованием катодной меди
- Технология гидрометаллургического производства меди
- Технология огневого рафинирования черновой меди
- Видео: Медные руды Урала
Лекция 7. Гидрометаллургия меди.
Гидрометаллургические способы получения меди в принципе пригодны для переработки любых видов рудного сырья. Однако их обычно используют для извлечения меди из окисленных руд или предварительно обожженных сульфидных руд. Доля гидрометаллургических процессов в общем производстве меди за рубежом постоянно возрастает и составляет сейчас – 12-15 %. В СНГ эти способы пока почти не применяют; лишь небольшое количество меди извлекается выщелачиванием вскрышных пород в отвалах (кучах) и забалансовых руд.
Ограниченное применение гидрометаллургических способов в медной промышленности является следствием в основном малых запасов окисленных руд и сложности попутного извлечения золота и серебра. По этой причине гидрометаллургию используют главным образом для переработки бедных руд с нерентабельным содержанием благородных металлов, пустая порода которых не вступает в химическое взаимодействие с растворителем. Для практической выгодности гидрометаллургии необходимо также, чтобы медь находилась в форме легкорастворимого соединения или переводилась в растворимую форму без значительных затрат.
Любой гидрометаллургический способ, не считая подготовительных и вспомогательных операций, состоит из двух основных стадий: обработки рудного сырья растворителем (выщелачивание) и осаждения металла из раствора.
При выборе растворителя учитывается ряд требований. Основными из них являются дешевизна и доступность растворителя, эффективность его воздействия на компоненты руды, незначительное воздействие на минералы пустой породы и возможность его регенерации. Применительно к медному сырью этим требованиям в наибольшей степени удовлетворяют вода и растворы серной кислоты и сульфата трехвалентного железа.
Вода — наиболее дешевый и доступный растворитель — пригодна, как правило, для обработки сырья и полупродуктов, содержащих медь в форме сульфатов или хлоридов. В условиях естественного (природного) выщелачивания сульфидных минералов при совместном действии воды и кислорода воздуха происходит окисление сульфидов с образованием серной кислоты и сульфата трехвалентного железа, которые и растворяют в конечном итоге сульфиды.
Раствор серной кислоты — наиболее распространенный растворитель в гидрометаллургии меди. Он обладает достаточно высокой растворяющей способностью, дешев и легко регенерируется. Однако его невыгодно применять для сырья с повышенным содержанием основных породообразующих минералов (известняка, кальцита, доломита и т.д.) из-за резкого увеличения расхода растворителя на их растворение и невозможности регенерации H2S04 из сульфатов кальция и магния.
Сульфат трехвалентного железа является хорошим растворителем для многих природных сульфидов меди. Однако этот растворитель самостоятельного значения в гидрометаллургии меди не имеет. Причиной этому является гидролиз Fe2(S04)3 в водных растворах. Для придания устойчивости сульфату растворы нужно подкислять серной кислотой.
При совместном воздействии указанных двух реагентов на сульфидные минералы Fe2(S04)3 работает как окислитель сульфидов, а серная кислота является их фактическим растворителем. Сульфат трехвалентного железа при этом восстанавливается до FeS04. Регенерацию растворителя осуществляют путем окисления FeS04 до Fe2(S04)3 аэрацией (продувкой) воздухом, часто в присутствии определенного вида бактерий (бактериальное выщелачивание) и реже хлором.
Для выщелачивания медных руд и концентратов применяют несколько методов: выщелачивание в кучах; подземное выщелачивание; выщелачивание путем просачивания раствора через слой рудного материала (перколяция); выщелачивание в чанах с механическим перемешиванием (агитация); автоклавное выщелачивание (под давлением).
В отечественной металлургии меди нашли применение только первые два метода.
Кучное выщелачивание применяют для извлечения меди на месте из вскрышных пород (отвалов) старых и новых карьеров.
В качестве промышленного осадителя меди используют материалы на основе железа — железный лом, стружку, обрезь жести, обезлуженную консервную жесть, губчатое (пористое) железо и т.д. в связи с их достаточной активностью, доступностью и невысокой стоимостью.
В современной практике цементации меди наибольшее распространение получили цементационные желоба, вращающиеся барабаны и чаны с механическим перемешиванием.
Основной продукт цементации — цементную медь — отправляют для дальнейшей переработки на медеплавильные заводы. Она содержит 65-75 % Си, а остальное — в основном железо. Отработанные растворы с содержанием — 0,05 г/л Си направляют на выщелачивание. Извлечение меди при цементации составляет 90-98 %. Расход железа на цементацию I т меди колеблется от 1,5 до 2,5 т.
Основными недостатками цементационного осаждения меди являются: необходимость расходования серной кислоты при регенерации оборотных растворов, содержащих FeS04; необходимость дополнительной очистки (переработки) получающейся цементной меди для получения товарного продукта.
Экстракцию меди из бедных растворов органическими растворителями успешно используют на нескольких заводах в США и Африке. При экстракционном способе предусматривается в стадии реэкстракции органической фазы получение медного раствора, содержащего до 90 г/л Си. Такой раствор может быть переработан методом электролиза с получением чистой катодной меди или автоклавным способом на медный порошок.
Разработаны также сорбционные процессы для извлечения меди из окисленных медных руд и растворов после кучного или подземного выщелачивания с использованием ионообменных материалов, которые также позволяют получать медь в виде катодов или порошков.
Контрольные вопросы
1. Методы гидрометаллургии меди
2. Требования, предъявляемые при кучном выщелачивании меди
3. Организация работы кучного выщелачивания
Лекция 8. |
Никель и его применение. Сырье для получения никеля. Современное состояние производства никеля
Никель и его применение
Никель — единственный «молодой» металлиз тяжелых цветных металлов, получивший широкое применение только в конце XIX в. Впервые как химический элемент никель был открыт в 1751 г.и выделен в чистом виде в 1804 г. Однако он был обнаружен в составе монетных сплавов, применявшихся еще в Ш столетии до н.э. До 1875 г.никель считался ювелирным металлом, стоилдорого и производили его в очень небольших количествах. Мировое производство никеля в 1875 г. составляло всего
500т, а затем качало быстро расти.
Чистый никель – металл светло-серебристого цвета. Никель обладает достаточно высокой прочностью и пластичностью. Он легко поддается механической обработке как в горячем, так и в холодном состоянии, легко прокатывается в листы толщиной до 0,02 мм и протягивается в проволоку диаметром до 0,01 мм.
В химическом отношении никель малоактивный металл, обладает высокую коррозионную стойкость в атмосфере воздуха, устойчив к воздействию воды и многих агрессивных сред.
С кислородом никель образует два основных оксида: NiO, Ni2O3. С серой никель образует сульфиды: NiS, Ni3S2.
С металлами никель образует многочисленные сплавы. Известны более 3000 никельсодержащих сплавов. В сплавах никель придает разнообразные ценные свойства (жаропрочность, кислотоупорность, вязкость, нержавеющие свойства…). В чистом виде никель используется для никелирования, для изготовления посуды с высокой коррозионной стойкостью, в качестве катализаторов. Среди цветных металлов по производству и потреблению никель занимает пятое место после алюминия, меди, свинца и цинка.
Сырье для получения никеля
Промышленное производство никеля возникло в конце XIX века почти одновременно на базе окисленных никелевых руд Новой Каледонии и сульфидных медно-никелевых руд Канады.
Окисленные (силикатные) никелевые руды являются рудами вторичного происхождения. Они образовались в результате выветривания главным образом змеевиков и состоят из простых и сложных гидратированных силикатов магния и железа, и алюмосиликатов, содержащих никель.
Основными никельсодержащими минералами в окисленных никелевых рудах являются гарниерит (Ni, Mg)O ∙ SiO2 ∙ 2H2O, ревдинскит и непуит 3(Ni, Mg)O ∙ SiO2 ∙ 2H2O и нонтронит nNiO ∙ (Al, Fe)2O3 ∙ 4SiO2 ∙ 4H2O. Никелевые минералы в рудах находятся в тонкодисперсионном состоянии. По внешнему виду они похожи на глину, для них характерны пористое, рыхлое строение, малая механическая прочность кусков, высокая гигроскопичность. Из-за отсутствия рациональных методов обогащения окисленные никелевые руды поступают непосредственно на металлургическую переработку.
В СНГ промышленные месторождения окисленных никелевых руд находятся на Урале, Казахстане и на Украине, за рубежом – в Новой Каледонии, на Кубе, Филиппинах, в США, Бразилии, Индонезии и Греции.
В сульфидных рудах никель присутствует главным образом в виде пентландита [(Ni,Fe)S], представляющего изоморфную смесь сульфидов никеля и железа переменного соотношения, и частично в форме твердого раствора в пирротине (Fe7S8).
Основным спутником никеля в сульфидных рудах является медь, содержащаяся главным образом в халькопирите (CuFeS2). Из-за высокого содержания меди эти руды называют медно-никелевыми. Кроме никеля и меди, в медно-никелевых рудах обязательно присутствуют кобальт, металлы платиновой группы (платина, палладий, родий, рутений, осмий и иридий), золото, серебро, селен и теллур, а также сера и железо. Таким образом, сульфидные медно-никелевые руды являются полиметаллическим сырьем очень сложного химического состава. При их металлургической переработке в настоящее время извлекают 14 (включая серу) ценных компонентов.
Химический состав сульфидных медно-никелевых руд следующий, %: Ni 0,3-5,5; Си 0,2 — 1,9; Со 0,02- 0,2; Fe 30 -40; S 17- 28; Si02 10 — 30; MgO 1- 10; А1203 5- 8. По структуре медно-никелевые руды могут быть сплошными, жильными и вкрапленными. Чаше встречаются два последних типа руд. В зависимости от глубины залегания руду добывают как открытым, так и подземным способом.
В отличие от окисленных никелевых руд сульфидные медно-никелевые руды характеризуются высокой механической прочностью, негигроскопичны и могут подвергаться обогащению. Следует отметить, что обогащению обычно подлежат только сравнительно бедные руды (не более 1,5-2,5 % Ni). Богатые руды после соответствующей подготовки направляют на плавку.
В СНГ промышленные месторождения сульфидных медно-никелевыых руд находятся на Таймырском и Кольском полуостровах, за рубежом – в Канаде и Австралии.
Основным способом обогащения сульфидных медно-никелевых руд является флотация. Иногда флотационному обогащению предшествует магнитная сепарация, направленная на выделение пирротина в самостоятельный концентрат. Возможность проведения магнитной сепарации обусловлена относительно высокой магнитной восприимчивостью пирротина.
Выделение пирротинового концентрата при обогащении руды улучшает качество первичного никелевого концентрата вследствие вывода из него значительной части железа и серы и упрощает его последующую металлургическую переработку. Однако при получении пирротинового концентрата, содержащего до 1,5 % Ni, возникает необходимость в обязательной его переработке с целью извлечения никеля, серы и платиноидов.
Флотационное обогащение медно-никелевых руд может быть коллективным и селективным. При коллективной флотации за счет отделения пустой породы получают медно-никелевый концентрат. Однако и селективная флотация не обеспечивает полного разделения меди и никеля (особенно по выделению никеля). Продуктами селекции в этом случае будут являться медный концентрат с относительно небольшим содержанием никеля и никелево-медный концентрат, отличающийся от руды более высоким отношением Ni:Си. На практике такой концентрат обычно называют просто никелевым.
Таким образом, в зависимости от принятой схемы обогащения сульфидных медно-никелевых руд можно получать коллективные медно-никелевые, медные, никелевые и пирротиновые концентраты, состав которых приведен ниже.
Состав продуктов обогащения медно-никелевых руд
Ni Си Fe S SiO2
Коллективный 3,6-6,5 3,0-6,0 38-40 28-30 12-14
Никелевый 6-11 4-6 37-40 25-29 14-20
Пирротиновый 0,1-1,55 0,05-0,17 55-60 36-37 1-3
Как следует из приведенных данных, соотношение никеля и меди в медно-никелевых и никелевых концентратах изменяется примерно oт 2:1 до 1:2. Такие концентраты можно перерабатывать по одной и той же технологии. Медные концентраты с соотношением меди и никеля, равным 20:1, перерабатывают на медеплавильных заводах.
Кроме окисленных никелевых и сульфидных медно-никелевых руд, сырьем для получения никеля могут служить мышьяковистые руды, добываемые в Бирме и в Канаде.
Источник
Способы получения меди из руды и металлолома
Особенности медных руд
Медьсодержащие руды характеризуются как многоэлементные. Наиболее часто встречающиеся соединения бывают с:
- железом;
- серой;
- медью.
В незначительной концентрации могут присутствовать:
Месторождения во всем мире имеют примерно одинаковый набор химических элементов в составе руды, отличаются лишь их процентным соотношением. Чтобы получить чистый металл, используют различные промышленные способы. Почти 90% металлургических предприятий используют одинаковый метод производства чистой меди – пирометаллургический.
Один из самых больших карьеров по добыче руди приносит 17 миллионов тонн меди в год
Схема этого процесса позволяет также получать металл из вторичного сырья, что для промышленности является существенным плюсом. Поскольку месторождения относятся к группе не восполняемых – запасы с каждым годом уменьшаются, руды беднеют, а их добыча и производство становится дорогим. Это, в конечном счете, влияет на цену металла на международном рынке. Кроме пирометаллургического метода, существуют еще способы:
- гидрометаллургический;
- метод огневого рафинирования.
Стадии пирометаллургического производства меди
Общие способы получения метала из руды
Промышленное получение меди с использованием пирометаллургического способа имеет преимущества перед другими методами:
- технология обеспечивает высокую производительность – с ее помощью можно получать метал из породы, в которой содержание меди даже ниже 0,5%;
- позволяет эффективно перерабатывать вторичное сырье;
- достигнута высокая степень механизации и автоматизации всех этапов;
- при его использовании значительно сокращаются выбросы вредных веществ в атмосферу;
- метод экономичный и эффективный.
Обогащение
Схема обогащения руды
На первом этапе производства необходимо подготовить руду, которую доставляют на обогатительные комбинаты прямо с карьера или шахты. Часто встречаются большие куски породы, которые предварительно нужно измельчить.
Происходит это в огромных дробильных агрегатах. После дробления получается однородная масса, с фракцией до 150 мм. Технология предварительного обогащения:
- в большую емкость засыпается сырье и заливается водой;
- затем добавляется кислород под давлением, чтобы образовалась пена;
- частицы металла прилипают к пузырькам и поднимаются наверх, а пустая порода оседает на дне;
- далее, медный концентрат отправляется на обжиг.
Обжиг
Этот этап направлен на то, чтобы максимально снизить содержание серы. Рудную массу помещают в печь, где устанавливается температура 700–800 о С. В результате термического воздействия содержание серы сокращается в два раза. Сера окисляется и испаряется, а часть примесей (железа и других металлов) переходит в легкошлакуемое состояние, которое облегчит в дальнейшем плавку.
Обжиг руды для снижения уровня серы
Плавка на штейн
Технология плавки на штейн позволяет получить черновую медь, которая различается по маркам: от МЧ1 – самая чистая до МЧ6 (содержит до 96% чистого металла). В ходе процесса плавки, сырье погружается в специальную печь, в которой температура поднимается до 1450 о С.
Технология переработки медной руды и получение черной меди
После расплавления массы она продувается сжатым кислородом в конвертерах. Они имеют горизонтальный вид, а дутье осуществляется через боковое отверстие. В результате продува сульфиды железа и серы окисляются и переводятся в шлак. Тепло в конвертере образуется за счет протекания раскаленной массы, он дополнительно не нагревается. Температура при этом составляет 1300 о С.
Общая схема выплавки меди
На выходе из конвертера получают черновой состав, который содержит до 0,04% железа и 0,1% серы, а также до 0,5% прочих металлов:
Такой черновой металл отливается в слитки массой до 1200 кг. Это так называемая анодная медь. Многие производители останавливаются на этом этапе, реализуют такие слитки. Но поскольку часто производство меди сопровождается добычей драгоценных металлов, которые содержатся в руде, то на обогатительных комбинатах используется технология рафинирования чернового сплава. При этом выделяются и сохраняются прочие металлы.
Рафинирование с использованием катодной меди
Технология получения рафинированной меди довольно простая. Ее принцип используют даже для чистки медных монет от окислов в домашних условиях. Схема производства выглядит следующим образом:
Слитки рафинированной меди
- черновой слиток помещается в ванну с электролитом;
- в качестве электролита используется раствор со следующим содержанием:
- сульфат меди – до 200 г/л;
- серная кислота – 135–200 г/л;
- коллоидные добавки (тиомочевина, столярный клей)– до 60 г/л;
- вода.
- температура электролита должна быть до 55 о С;
- помещаются в ванну пластины катодной меди – тонкие листы чистого металла;
- подключается электричество. В это время происходит электрохимическое растворение металла. Частицы меди концентрируются на катодной пластине, а прочие включения оседают на дне и называются шлам.
Для того, чтобы процесс получения рафинированной меди протекал быстрее, анодные слитки должны быть не более 360 кг.
Весь процесс электролиза протекает в течение 20–28 суток. За этот период вынимают катодную медь до 3–4 раз. Вес пластин получается до 150 кг.
Как это делается: добыча меди
В процессе рафинирования, на катодной меди могут образовываться дендриты – наросты, которые сокращают расстояние до анода. В результате чего снижается скорость и эффективность реакции. Поэтому, при возникновении дендритов, их незамедлительно удаляют.
Технология гидрометаллургического производства меди
Медная руда также может содержать золото
Этот способ не получил широкого распространения, поскольку, при этом можно потерять драгоценные металлы, содержащиеся в медной руде.
Его использование оправдано, когда порода бедная – содержит менее 0,3% красного металла.
Как получить медь гидрометаллургическим способом?
Вначале порода измельчается до мелкой фракции. Затем помещается в щелочной состав. Чаще всего используют растворы серной кислоты или аммиака. Во время реакции медь вытесняется железом.
Цементация меди железом
Оставшиеся после выщелачивания растворы солей меди проходят дальнейшую обработку – цементацию:
- в раствор помещают железную проволоку, листы или прочие обрезки;
- в ходе химической реакции железо вытесняет медь;
- в результате металл выделяется в виде мелкого порошка, в котором содержание меди достигает 70%. Дальнейшее очищение происходит путем электролиза с использованием катодной пластины.
Технология огневого рафинирования черновой меди
Этот способ получения чистой меди используется, когда исходное сырье – медный лом.
Процесс протекает в специальных отражательных печах, которые топятся углем или нефтью. Растопленная масса наполняет ванну, в которую вдувают воздух по железным трубам:
- диаметр труб – до 19 мм;
- давление воздуха – до 2,5 атм;
- емкость печи – до 250 кг.
В процессе рафинирования окисляется медное сырье, выгорает сера, затем металлы. Окислы не растворяются в жидкой меди, а всплывают на поверхность. Чтобы их удалить, используется кварц, который помещается в ванну еще до начала процесса рафинирования и размещается вдоль стенок.
Если в металлоломе присутствует никель, мышьяк или сурьма, то технология усложняется. Процент содержания никеля в рафинированной меди можно снизить лишь до уровня 0,35%. Но если присутствуют остальные компоненты (мышьяк и сурьма), то образуется никелевая «слюдка», которая растворяется в меди, и ее удалить не получится.
Видео: Медные руды Урала
Источник