- ХИМИЯ НЕФТИ
- ХИМИЧЕСКИЙ СОСТАВ НЕФТИ
- Гетероорганические соединения
- Серосодержащие соединения
- Кислородсодержащие соединения
- Удаление гетероатомных соединений в процессе гидроочистки
- Распределение гетероатомных соединений по нефтяным фракциям. Теоретические основы процесса гидроочистки. Кинетика гидроочистки реальных промышленных видов сырья. Катализаторы гидроочистки. Методы анализа азотсодержащих соединений в нефтяных фракциях.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
ХИМИЯ НЕФТИ
ХИМИЧЕСКИЙ СОСТАВ НЕФТИ
Гетероорганические соединения
Гетероорганические соединения (серо-, кислород- и азотсодержащие) различного строения и молекулярной массы присутствуют в разнообразных пропорциях в дистиллятных и остаточных фракциях нефти. Особенно сложно изучение природы и состава высокомолекулярных гетероорганических соединений, основной частью которых являются смолоасфальтеновые вещества. Благодаря неподеленным парам электронов гетероатомы серы, кислорода и азота способны выступать в качестве координирующего центра при образовании ассоциатов в нефтяных системах.
Серосодержащие соединения
Серосодержащие соединения относятся к наиболее представительной группе гетероатомных компонентов газоконденсатных и нефтяных систем. Общее содержание серы в нефтегазовых системах колеблется в широких пределах: от сотых долей процента до 6-8 % (масс.) и более. Содержание серосодержащих соединений в некоторых нефтях достигает 40 % (масс.) и выше, в некоторых случаях нефть почти целиком состоит из них. В отличие от других гетероатомов, преимущественно концентрирующихся в смолисто-асфальтеновых веществах, значительная доля серы содержится в дистиллятных фракциях. Как правило, содержание серы в прямогонных фракциях возрастает по мере повышения температуры их кипения и общей сернистости исходной нефти.
В нефтегазовых системах присутствуют незначительные количества неорганических серосодержащих соединений (элементная сера и сероводород), они также могут образоваться как вторичные продукты разложения других серосодержащих соединений при высоких температурах в процессах перегонки, деструктивной переработки. Среди серосодержащих соединений, найденных в нефти, идентифицированы следующие:
- Алифатические, алициклические и ароматические тиолы (меркаптаны) R-SH:
Распределение различных групп серосодержащих соединений в нефтях и в нефтяных фракциях подчиняется следующим закономерностям.
Тиолы содержатся практически во всех сырых нефтях обычно в малых концентрациях и составляют 2-10 % (маcc.) от общего содержания серосодержащих соединений. В газоконденсатах присутствуют в основном алифатические меркаптаны C1-С3. Некоторые нефти и газоконденсаты и их фракции представляют собой естественные концентраты меркаптанов, примерами которых могут служить бензиновые фракции супергигантского месторождения Прикаспия; фракция 40-200°С газоконденсата Оренбургского месторождения, содержащая 1,24 % (маcc.) общей серы, в том числе 0,97 % меркаптановой; легкая керосиновая фракция 120-280°С нефти месторождения Тенгиз, содержащая 45-70 % меркаптановой серы от общего содержания серосодержащих соединений. При этом запасы природных тиолов в углеводородном сырье Прикаспийского региона соответствуют уровню их общемирового получения синтетическим путем. Природные тиолы — перспективное сырье для синтеза пестицидов (на основе симметричных триазинов) и одоризации сжиженных газов.
Тиоэфиры составляют до 27 % от суммы серосодержащих соединений в сырых нефтях и до 50 % — в средних фракциях, в тяжелых вакуумных газойлях содержание сульфидов меньше. Методы выделения нефтяных сульфидов основаны на их способности образовывать комплексные соединения донорноакцепторного типа за счет передачи неподеленной пары электронов атома серы на свободную орбиталь акцептора. В качестве акцептора электронов могут выступать галогениды металлов, галогеналкилы, галогены. Реакции комплексообразования с нефтяными сульфидами протекают, к сожалению, не селективно; в образовании комплексов могут принимать участие и другие гетероатомные компоненты нефти.
Диалкилдисульфиды в сырых нефтях не обнаружены, они обычно образуются при окислении меркаптанов в мягких условиях и поэтому присутствуют в бензинах (до 15 %). Основная доля серосодержащих соединений нефтей приходится на так называемую «остаточную» серу, не определяемую стандартными методами. В ее составе преобладают тиофены и их производные, поэтому раньше «остаточную» серу называли «тиофеновой», однако с помощью массспектрометрии отрицательных ионов в ней обнаружены ранее не определявшиеся сульфоксиды, сульфоны и дисульфан. В бензиновых фракциях содержание производных тиофена мало, в средних и особенно высококипящих фракциях оно достигает 50-80 % от суммы серосодержащих соединений. Относительное содержание тиофеновых производных, как правило, совпадает со степенью ароматичности нефтяной системы. Трудности, возникающие при выделении серосодержащих соединений (особенно из высококипящих фракций), вызваны близостью химических свойств аренов и тиофенов. Схожесть их химического поведения обусловлена ароматичностью тиофенов, возникающей как результат включения гетероатома серы в π–электронную систему до ароматического секстета. Следствием этого является повышенная склонность нефтяных тиофенов к интенсивному межмолекулярному взаимодействию.
Кислородсодержащие соединения
Кислородсодержащие соединения содержаться в нефтяных системах от 0,1-1,0 до 3,6 % (масс.). С повышением температуры кипения дистиллятных фракций содержание их возрастает, причем основная часть кислорода сосредоточена в смолоасфальтеновых веществах. В составе нефтей и дистиллятов содержится до 20 % и более кислородсодержащих соединений.
Среди них традиционно выделяют вещества кислого и нейтрального характера. К кислым компонентам относятся карбоновые кислоты и фенолы. Нейтральные кислородсодержащие соединения представлены кетонами, ангидридами и амидами кислот, сложными эфирами, фурановыми производными, спиртами и лактонами.
- Карбоновые кислоты являются наиболее изученным классом кислородсодержащих соединений нефти. Содержание нефтяных кислот по фракциям меняется по экстремальной зависимости, максимум которой приходится, как правило, на легкие и средние масляные фракции. Методом хромато-масс-спектрометрии идентифицированы различные типы нефтяных кислот. Большинство из них относится к одноосновным (RCOOH), где в качестве R может быть практически любой фрагмент углеводородных и гетероорганических соединений нефти. Давно замечено, что групповые составы кислот и нефтей соответствуют друг другу: в метановых нефтях преобладают алифатические кислоты, в нафтеновых — нафтеновые и нафтеноароматические кислоты. Обнаружены алифатические кислоты от C1 до С25 линейного строения и некоторые разветвленного строения. При этом у нефтяных кислот соотношение н-алкановых и разветвленных кислот совпадает с соотношением соответствующих углеводородов в нефтях.
- Алифатические кислоты представлены, в первую очередь, н-алкановыми кислотами. Из разветвленных кислот более распространены содержащие метильный заместитель в основной цепи. Все низшие изомеры этого типа найдены в нефтях, вплоть до С7. Еще одна важная группа алифатических кислот — кислоты изопреноидного строения, среди которых доминируют пристановая (С19) и фитановая (С20).
- Алициклические (нафтеновые) кислоты нефти — это моноциклокарбоновые кислоты — производные циклопентана и циклогексана; полициклические могут содержать до 5 колец (данные для калифорнийской нефти). Группы СООН в молекулах моноциклических кислот непосредственно соединены с циклом или находятся на конце алифатических заместителей. В цикле может быть до трех (чаще всего метальных заместителей), наиболее распространенными положениями которых являются 1, 2; 1, 3; 1, 2, 4; 1, 1, 3 и 1, 1, 2, 3.
Содержание бициклических нафтеновых кислот в ряде случаев приближается, а иногда и превышает содержание моноциклических кислот, хотя индивидуальные их представители пока не идентифицированы.
Молекулы три-, тетра- и пентациклических кислот, выделенных из нефтей, построены в основном из сконденсированных между собой циклогексановых колец.
Установлено присутствие в нефтях гексациклических нафтеновых кислот с циклогексановыми кольцами. Ароматические кислоты в нефтях представлены бензойной кислотой и ее производными. В нефтях обнаружено и множество гомологических рядов полициклических нафтеноароматических кислот, а идентифицированы моноароматические стероидные кислоты в самотлорской нефти.
Из кислородсодержащих соединений нефтяные кислоты характеризуются наибольшей поверхностной активностью. Установлено, что поверхностная активность как малосмолистых, так и высокосмолистых нефтей значительно снижается после удаления из них кислых компонентов (кислот и фенолов). Сильные кислоты принимают участие в образовании ассоциатов нефтей, что показано при изучении их реологических свойств.
Источник
Удаление гетероатомных соединений в процессе гидроочистки
Распределение гетероатомных соединений по нефтяным фракциям. Теоретические основы процесса гидроочистки. Кинетика гидроочистки реальных промышленных видов сырья. Катализаторы гидроочистки. Методы анализа азотсодержащих соединений в нефтяных фракциях.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 30.07.2012 |
Размер файла | 170,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
«Химия нефти и газа»
«Удаление гетероатомных соединений в процессе гидроочистки»
В сырой нефти можно найти примеси самых разных видов. Во время перемещения нефтяных фракций по установкам нефтеперерабатывающего завода эти примеси могут оказывать вредное влияние на оборудование, катализаторы и качество конечных продуктов. Кроме того, содержание многих примесей в нефтепродуктах официально или неофициально ограничивается. Совершенно очевидно, что качество прямогонных нефтяных дистиллятов напрямую зависит от химического состава перерабатываемой нефти.
Наиболее универсальным, эффективным и экологически предпочтительным процессом очистки нефтепродуктов от вредных примесей является гидроочистка. Гидроочистка-процесс удаления из нефтепродуктов гетероатомных соединений, непредельных и частично полициклических аренов в среде водорода на катализаторах.
Процессы гидроочистки нефтепродуктов получили развитие в связи с увеличением доли сернистых нефтей в нефтепереработке и повышением требований к качеству топлив, масел, а также сырья для каталитических процессов (каталитического крекинга, реформинга).
Из сказанного вытекает актуальность исследований процесса гидроочистки.
Цель работы — определение количественного содержания гетероатомных соединений в нефти, а также подробное рассмотрение процесса гидроочистки.
1.1 Распределение гетероатомных соединений по нефтяным фракциям
Гетероатомные соединения — это химические соединения на основе углеводородов любой группы, содержащие один или несколько различных атомов химических элементов — серы, азота, кислорода, хлора и металлов. Соответственно их называют «серосодержащие ГАС», «азотсодержащие ГАС» и т.д.
Между содержанием гетероатомных соединений и плотностью нефтей наблюдается вполне закономерная зависимость: легкие нефти с высоким содержанием светлых бедны гетеросоединениями и, наоборот, ими богаты тяжелые нефти. В распределении их по фракциям наблюдается также определенная закономерность: гетероатомные соединения концентрируются в высококипящих фракциях и остатках.
Сернистые соединения являются наиболее распространенным и среди гетероатомных соединений нефтей и нефтепродуктов. Интерес к серосодержащим соединениям возрос в связи с проблемой переработки высокосернистых нефтей. В пластовых нефтях содержится от 0,01 до 14% масс. сернистых соединений в пересчете на серу. Низким содержанием серы характеризуются нефти Беларуси, Азербайджана, значительным количеством серосодержащих соединений — нефти Урало-Поволжья и Сибири; количество серы в Арланской нефти достигает до 3,0% масс., а в Усть-Балыкской — до 1,8% масс. Из зарубежных наиболее высоким содержанием серы отличаются нефти: месторождения Элбано-Панук (Мексика — 5,4% масс.), Роулз Пойнт (США — до 14% масс.).
Групповой состав сернистых соединений весьма различен. Идентифицировано и частично выделено помимо элементарной серы и сероводорода около 250 сернистых соединений. В нефтях бывшего СССР (арланской, сургутской, тугоровской и др.) идентифицировано 18 тиолов, 22 алифатических сульфида, 20 циклических сульфидов. Большинство идентифицированных соединений относится к легким фракциям. Фракции с температурой кипения до 160°С содержат тиолы, алифатические и алициклические сульфиды, а в более высококипящих фракциях присутствуют замещенные тиофены и бициклические сульфиды. Установлено, что в прямогонном остатке 50% серы входит в состав тиофеновых колец. Сложность идентификации высококипящих сернистых соединений объясняется отсутствием модельных индивидуальных соединений.
Характер распределения сернистых соединений в нефтяных фракциях имеет определение закономерности.
В нефтях идентифицированы следующие типы серосодержащих соединений:
элементная сера и сероводород — не являются непосредственно сероорганическими соединениями, но появляются в результате деструкции последних;
меркаптаны — тиолы, обладающие, как и сероводород, кислотными свойствами и наиболее сильной коррозионной активностью;
алифатические сульфиды (тиоэфиры) — нейтральны при низких температурах, но термически мало устойчивы и разлагаются при нагревании свыше 130-160°С с образованием сероводорода и меркаптанов;
моно- и полициклические сульфиды — термически наиболее устойчивые.
Моноциклические сульфиды представляют собой пяти- или шестичленные гетероциклы с атомом серы (XXI-XXIII). Кроме того, в нефтях идентифицированы полициклические сульфиды и их разнообразные гомологи, а также тетра- и пентациклические сульфиды (XXIV-XXX).
В то же время в последние годы во многих странах мира разрабатываются и интенсивно вводятся многотоннажные промышленные процессы по синтезу сернистых соединений, аналогичных нефтяным, имеющих большую народнохозяйственную ценность. Среди них наибольшее промышленное значение имеют меркаптаны.
Меркаптаны (тиолы) RSH — тип сернистых соединений, встречающийся только в легких фракциях бензина и отчасти керосина. В вышекипящих фракциях нефти меркаптаны отсутствуют.
По своим химическим свойствам меркаптаны напоминают спирты, но атом водорода в группе SH более подвижен.
Меркаптаны, содержащиеся в бензинах, окислением воздухом в присутствии катализаторов(Cu2Cl2) превращаются в дисульфиды:
Окисление меркаптанов азотной кислотой приводит к сульфокислотам:
Меркаптаны содержаться в нефтях в небольших количествах, и их общее содержание обычно составляет 2-10% (мас.) от всех серосодержащих соединений нефти. Одним из характерных свойств меркаптанов является их коррозионная активность, в связи с чем содержание меркаптановой серы в авиационном керосине и дизельном топливе ограничивается (не более 0,001-0,005 и 0,01% мас. соответственно). В бензинах они ухудшают антидетонационные свойства, химическую стабильность и уменьшают полноту сгорания.
Меркаптаны имеют очень сильный и неприятный запах, ощущаемый уже при концентрациях 1•%. Это свойство используется в газовых хозяйствах, где они применяют в качестве одорантов (этилмеркаптан) для обнаружения утечки бытового газа. Неприятный запах меркаптанов уменьшается с повышением их молекулярной массы.
Метилмеркаптан применяют в производстве метионина — белковой добавке в корм скоту и птице. Этилмеркаптан — одорант топливных газов. Тиолы С1 — С4 — сырье для синтеза агрохимических веществ, применяются для активации (осернения) некоторых катализаторов в нефтепереработке. Тиолы от бутилмеркаптана до октадецилмеркаптана используют в производстве присадок к смазочным и трансформаторным маслам, к смазочно-охлаждающим эмульсиям, применяемым при холодной обработке металлов, в производстве детергентов, ингредиентов резиновых смесей. Тиолы С8 — С,6 являются регуляторами радикальных процессов полимеризации в производстве латексов, каучуков, пластмасс. Среди регуляторов полимеризации наибольшее значение имеют третичный до-децилмеркаптан и нормальный додецилмеркаптан. Меркаптаны применяют для синтеза флотореагентов, фотоматериалов, красителей специального назначения, в фармакологии, косметике и многих других областях.
Сульфиды — нейтральные на холоду и термически малоустойчивые сульфиды (R-S-R’ алифатические, Ar-S-Ar диарилсульфиды или Ar-S-R смешанные) и дисульфиды (R-S-S-R’).
Ациклические сульфиды при 5,0 МПа и 375°С превращаются полностью, давая соответствующие углеводороды:
R-S-R? + 2H2 RH + R?H + H2S
Сульфиды обладают более слабым запахом, чем меркаптаны, они нейтральны и поэтому щёлочью не извлекаются. По своему строению сульфиды являются аналогами простых эфиров. Они также склонны к окислению, и это их свойство используется для получения сульфоксидов. Дисульфиды в нефтях содержатся в небольших количествах, но они более реакционноспособны, чем сульфиды. При нагревании легко разлагаются на углеводород, меркаптан и сероводород.
RSR — присутствуют во всех фракциях нефти и имеют разнообразные структуры углеродных радикалов. Они могут быть разделены на три большие группы: сульфиды с насыщенными углеводородными радикалом, тиофены и сульфиды с ароматическим или нафтено- или парафино-ароматическим радикалом. Циклически насыщенные сульфиды являются главными сернистыми компонентами в керосиновых и газойлевых фракциях.
В высших фракциях нефти главную часть сульфидов составляют ароматические сульфиды, которые также могут быть полиароматическими циклами типа:
Дисульфиды RSSR — сернистые соединения с двумя атомами серы в молекуле, легко образуются из меркаптанов при окислении воздухом. Поэтому дисульфиды присутствуют во всех фракциях нефтей, содержащих меркаптаны, и имеют вторичное происхождение. Первичных дисульфидов в легких и средних фракциях содержится незначительно. Из этих фракций выделены 2-метилтиено — (3,2) — и 3-метилтиено — (2,3) — тиофены. По мере увеличения молекулярной массы количество сернистых компонентов с двумя атомами серы возрастает, достигая максимального значения в асфальтено-смолистых веществах.
Сульфиды служат компонентами при синтезе красителей, продукты их окисления — сульфоксиды, сульфоны и сульфокислоты — используют как эффективные экстрагенты редких металлов и флотореагенты полиметаллических руд, пластификаторы и биологически активные вещества. Перспективно применение сульфидов и их производных в качестве компонентов ракетных топлив, инсектицидов, фунгицидов, гербицидов, пластификаторов, комплексообразователей и т.д. За последние годы резко возрастает применение полифениленсульфидных полимеров. Они характеризуются хорошей термической стабильностью, способностью сохранять отличные механические характеристики при высоких температурах, великолепной химической стойкостью и совместимостью с самыми различными наполнителями. Твердые покрытия из полифенилсульфида легко наносятся на металл, обеспечивая надежную защиту его от коррозии, что уже подхвачено зарубежной нефтехимической промышленностью, где наблюдается поли-фенилсульфидный «бум». Важно еще подчеркнуть, что в этом полимере почти одна треть массы состоит из серы.
Тиофеновые и тиофено-полициклические сернистые соединения составляют в нефтях от 45 до 92% от всего количества серосодержащих компонентов. Тиофен и шестнадцать его гомологов С4-С9 были выделены из разных нефтей.
Тиофены и бензитиофены в конечном счёте превращаются в насыщенные или ароматические углеводороды:
Тиофен и 2-метилтиофен являются эффективными выносителями соединений марганца из карбюраторных двигателей при использовании в качестве антидетонатора циклопентадиенил-карбонил-марганца. В настоящее время этот антидетонатор широко применяется в США, где около 40% неэтилированных бензинов содержат не свинцовые антидетонаторы.
Учитывая наличие значительных ресурсов серосодержащих соединений в нефтях, исключительно актуальной является проблема их извлечения и рационального применения в народном хозяйстве.
Типичное соотношение перечисленных серосодержащих соединений в нефтях различных месторождений составляет: меркаптаны-2-10%, сульфиды-7-40% (в среднем 18%), тиофены-50-90% (в среднем 50%). Кроме перечисленных представителей серосодержащих соединений в высококипящих фракциях нефтей содержатся и другие более сложные полициклические соединения нефти.
Содержание кислорода в нефтяных системах колеблется от 0,1-1,0 до 3,6%(масс.). С повышением температуры кипения дистиллятных фракций оно возрастает, причем основная часть кислорода сосредоточена в смолоасфальтеновых веществах.
Среди них традиционно выделяют вещества кислого и нейтрального характера. К кислым компонентам относятся карбоновые кислоты и фенолы. Нейтральные кислородосодержащие соединения представлены кетонами, ангидридами и амидами кислот, сложными эфирами, фурановыми производными, спиртами и лактонами.
В настоящее время методы выделения кислот и фенолов также основаны на взаимодействии их функциональных групп (карбоксильной и гидроксильной) с каким-либо реагентом.
Основная часть кислорода нефтей входит в состав асфальто — смолистых веществ и только около 10% его приходится на долю кислых (нефтяные кислоты и фенолы) и нейтральных (сложные эфиры, кетоны) кислородсодержащих соединений. Они сосредоточены преимущественно в высококипящих фракциях. Нефтяные кислоты (CnHmCOOH) представлены в основном циклопентан- и циклогексан-карбоновыми (нафтеновыми) кислотами и кислотами смешанной нафтеноароматической структуры. Из нефтяных фенолов идентифицированы фенол (С6Н5ОН), крезол (СН3С6Н4ОН), ксилеиолы ((СН3)2С6Н3ОН) и их производные.
фицированы фенол (С6Н5ОН), крезол (СН3С6Н4ОН), ксиленолы ((СН3) 2С6НзОН) и их производные.
Из бензиновой фракции некоторых нефтей выделены ацетон, метилэтил-, метилпропил-, метилизопропил-, метилбутил- и этили-зопропилкетоны и некоторые другие кетоны RCOR».
В средних и высококипящих фракциях нефтей обнаружены циклические кетоны типа флуоренона (XXXIX), сложные эфиры (AcOR, где АС — остаток нефтяных кислот) и высокомолекулярные простые эфиры (R’OR) как алифатической, так и циклической структур, например, типа бензофуранов (XL), обнаружены в высококипящих фракциях и остатках.
В бензиновых фракциях нефтей встречаются в малых количествах только алифатические кислоты нормального и слаборазветвленного строения. По мере повышения температуры кипения их фракций в них появляются алифатические кислоты сильноразветвленной структуры, например, изопреноидного типа, а также на¬фтеновые кислоты. Последние составляют основную долю (до 90%) от всех кислородсодержащих соединений в средних и масляных фракциях. Наиболее богаты ими бакинские, грозненские, эмбенские, сахалинские и бориславские нефти (содержание их достигает до 1,7% масс). Содержание фенолов в нефтях незначительно (до 0,1% масс).
Промышленное значение из всех кислородных соединений нефти имеют только нафтеновые кислоты и их соли — нафтенаты, обладающие хорошими моющими свойствами. Поэтому отходы щелочной очистки нефтяных дистиллятов — так называемый мылонафт — используется при изготовлении моющих средств для текстильного производства.
Технические нефтяные кислоты (асидол), выделяемые из керосиновых и легких масляных дистиллятов, находят применение в качестве растворителей смол, каучука и анилиновых красителей; для пропитки шпал; для смачивания шерсти; при изготовлении цветных лаков и др. Натриевые и калиевые соли нафтеновых кислот служат в качестве деэмульгаторов при обезвоживании нефти. Нафтенаты кальция и алюминия являются загустителями консистентных смазок, а соли кальция и цинка являются диспергирующими присадками к моторным маслам. Соли меди защищают древесину и текстиль от бактериального разложения.
Содержание азота в нефтях составляет десятые доли процента (обычно до 0,3 мас.%), но в отдельных случаях может доходить до 1,5 мас.%. Азот входит в основном в состав смолисто-асфальтеновых веществ нефти. При перегонке эти вещества могут разлагаться с образованием азотистых соединений, которые таким путём попадают в нефтяные фракции. Интересно отметить что, видимо, этим и объясняется повышение содержания азота в нефтяных фракциях по мере увеличения их температуры кипения. Азотистые соединения нефтей подразделяются на две основные группы: азотистые основания и «нейтральные» (слабоосновные) соединения.
Азотистые основания нефти представляют собой гетероциклические соединения с атомом азота в одном (реже в двух) из колец, с общим числом колец до трех. В основном они являются гомологами пиридина (XXXI), хинолина (XXXII) и реже акридина (XXXIII).
Нейтральные азотистые соединения составляют большую часть (иногда до 80%) азотсодержащих соединений нефти. Они представлены гомологами пиррола (XXXIV), бензпиррола-индола (XXXV) и карбазола (XXXVI).
С повышением температуры кипения нефтяных фракций в них увеличивается содержание нейтральных и уменьшается содержание основных азотистых соединений (табл. 3.2).
В кислотных экстрактах газойлевых фракций обнаружены гомологи пирролхинолина (XXXVII) и карбазолхинолина (XXXVIII), содержащие по 2 атома азота, один из которых имеет основную функцию, а другой нейтрален.
Теоретический интерес, с точки зрения генезиса нефти, представляет обнаружение производных аминокислот (содержат карбоксильные и аминогруппы, являются исходным материалом в растениях при биосинтезе гормонов, витаминов, пигментов и др.) и порфиринов, входящих в состав гемоглобинов, хлорофиллов, витаминов и др., участвующих в биологических процессах. Порфирины содержат в молекуле 4 пиррольных кольца и встречаются в нефтях в виде комплексов металлов — ванадия и никеля. Установлено, что они обладают каталитической активностью. Они сравнительно легко выделяются из нефти экстракцией полярными растворителями, такими, как ацетонитрил, пиридин, диметилформамид и др.
Азотистые соединения как основные, так и нейтральные — достаточно термически стабильны и не оказывают заметного влияния на эксплуатационные качества нефтепродуктов. Азотистые основания используются как дезинфицирующие средства, ингибиторы коррозии, как сильные растворители, добавки к смазочным маслам и битумам, антиокислители и т.д. Однако в процессах переработки нефтяного сырья проявляют отрицательные свойства — снижают активность катализаторов, вызывают осмоление и потемнение нефтепродуктов.
1.2 Теоретические основы процесса гидроочистки
Гидроочистка — процесс удаления из нефтепродуктов гетероатомов в результате гидрирования серу -, азот — и кислородсодержащих соединений. Одновременно гидрируются диены, алкены и отчасти полициклические арены и удаляются металлы, содержащиеся в виде металлорганических соединений.
Этот процесс одноступенчатый, проходящий в наиболее мягких, по сравнению с гидрокрекингом и деструктивной гидрогенизацией, условиях. Процесс протекает при 350-430°С, 3,0-6,0 МПа, циркуляции водородсодержащего газа 100-600 м 3 /м 3 сырья и объемной скорости 3 -10 ч -1 с применением катализатора (обычно алюмокобальтмолибденовый или алюмоникельмолибденовый).
Гидроочистке (или гидрооблагораживанию) может подвергаться различное сырье, получаемое как при первичной перегонке нефти, так и при термокаталитических процессах, от газа до масел и парафина. Наибольшее применение гидроочистка имеет для обессеривания сырья каталитического риформинга, а также для получения реактивного и малосернистого дизельного топлива из сернистых и высокосернистых нефтей. При гидроочистке происходит частичная деструкция в основном сероорганических и частично кислород- и азотсодержащих соединений.
Продукты разложения насыщаются водородом с образованием сероводорода, воды, аммиака и предельных или ароматических углеводородов.
Удаление гетероатомов происходит в результате разрыва связей C-S, C-N и C-O и насыщения образующихся осколков водородом. При этом сера, азот и кислород выделяется соответственно в виде H2S, NH3 и H2O. Алкены присоединяют водород по двойной связи. Частично гидрируются полициклические ароматические углеводороды[3].
Химизм процесса гидроочистки
Основными реакциями гидроочистки, протекающими на металлических центрах катализатора, являются реакции удаления серы и азота, а также реакция сатурации олефинов. Продуктами этих реакций являются свободный от примесей нефтепродукт, а также сероводород (H2S) и аммиак (NH3). К другим реакциям очистки относятся реакции удаления кислорода, металлов и галлоидных соединений, а также реакции сатурации ароматических нефтепродуктов. В каждой из этих реакций, поглощается водород и выделяется тепло.
Сера может встречаться в различных формах во всем диапазоне перегонки сырья. Более легкие соединения, такие как меркаптаны и дисульфиды легко превращаются в H2S. Превращение более тяжелых гетероатомных ароматических соединений, закипающих при более высоких температурах, проходит гораздо тяжелее.
Механизмы десульфуризации всех этих соединений показаны в следующих уравнениях. Большинство реакций являются прямыми, а наиболее сложной является реакция десульфуризации ароматических соединений серы. Она начинается с размыкания кольца и удаления серы, после чего следует сатурация результирующего олефина.
Реакции денитрогенизации протекают намного труднее реакций десульфуризации. Побочные реакции могут давать азотные соединения, которые труднее гидрогенизировать, чем исходное вещество. Сатурации гетероциклических азотосодержащих колец также мешают большие побочные группы.
Этапы механизма реакции отличаются от этапов десульфуризации. За денитрогенизацией пиридина следует ароматическая сатурация кольца, гидрогенолиз кольца, и, наконец, денитрогенизация.
Все рассмотренные выше реакции являются экзотермическими и вызывают повышение температуры в реакторе. Реакция сатурации олефина и некоторые реакции десульфуризации обладают одинаково большими скоростями протекания, но самое большое количество тепла дает реакция сатурации олефинов [4].
Термодинамически процесс гидроочистки низкотемпературный. Для быстрого протекания реакций на существующих промышленных катализаторах достаточна температура 330-380 С. Поскольку реакции присоединения водорода сопровождаются изменением объёма, давление в реакционной зоне оказывает решающее влияние на глубину процесса. Наиболее часто при гидроочистке применяют давление 2,5-5,0 МПа.
Гидрирование ароматических углеводородов идёт с выделением теплоты и снижением энтропии, константы равновесия гидрирования быстро уменьшаются с ростом температуры.
Суммарный тепловой эффект гидроочистки составляет 20 — 87 кДж на 1 кг сырья для прямогонных фракций. Добавление к прямогонному сырью до 30% фракций вторичного происхождения повышает теплоту реакции до 125-187 кДж/кг в зависимости от содержания непредельных углеводородов в сырье.
Механизм процесса гидроочистки
В отличие от других гидрогенизационных процессов процесс гидроочистки проходит в сравнительно мягких условиях, однако и ему свойственна совокупность ряда параллельных и последовательных реакций, в которых участвуют все компоненты, содержащиеся в исходной сложной смеси.
Основные реакции гидрирования углеводородов: насыщение алкеновых связей, насыщение ароматических связей, крекинг алканов, деалкилирование алкилбензолов, крекинг цикланов, гидроизомеризация алканов, гидроизомеризация цикланов.
При гидроочистке на алюмокобальтмолибденовом катализаторе не наблюдается заметного гидрирования бензольного кольца. Би-циклические ароматические углеводороды в значительной части гидрируются до тетрадинов, вне зависимости от их исходной концентрации в сырье [8].
Основные реакции серусодержащих соединений. Реакции каталитического гидрогенолиза сераорганических соединений, лежащие в основе процесса гидроочистки нефтепродуктов, изучены довольно подробно [8]. Меркаптаны, сульфиды и дисульфиды легко гидрируются в соответствующие углеводороды уже при сравнительно мягких условиях. В зависимости от строения сернистых соединений глубина их гидрогенолиза различна. Устойчивость сернистых соединений увеличивается в следующем ряду: меркаптан 2 /г. Для определения активности катализатора сравнивают обессеривающую способность испытываемого катализатора с обессеривающей способностью эталонного образца. Испытания ведут на пилотной установке по специальной методике. Для этого рассчитывают индекс активности. Сам катализатор должен иметь индекс активности не ниже 95%. Если активность свежего катализатора не достигает максимальной величины, катализатор активизирует в течение нескольких часов водородом при выше 300 о С. Со временем активность катализатора падает за счет отложений кокса на поверхности катализатора. Частичную регенерацию катализатора можно провести гидрированием коксовых отложений при циркуляции водорода и температурах 400-420 о С. Наиболее распространенные для гидроочистки в отечественной и зарубежной практике катализаторы приведены в таблице 2 [5].
Таблица 2. Катализаторы гидроочистки нефтяных фракций
Источник