- Геометрическое нивелирование.
- Оставьте свой комментарий
- Оставить комментарий от имени гостя
- Комментарии
- Закрепленные
- Понравившиеся
- Последние материалы
- Заключение (Грунты)
- Представления о решении задач нелинейной механики грунтов
- Прочность грунтов при сложном напряженном состоянии
- Основные закономерности татического деформирования грунтов
- Упругопластическое деформирование среды и поверхности нагружения
- Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний
- Инварианты напряженного и деформированного состояний грунтовой среды
- О коэффициентах устойчивости и сопоставление с результатами опытов
- Давление грунта на сооружения
- Несущая способность оснований
- Процесс отрыва сооружений от оснований
- Решения плоской и пространственной задач консолидации и их приложения
- Геометрическое нивелирование
- Методы нивелирования
- Способы геометрического нивелирования
Геометрическое нивелирование.
Геометрическое нивелирование выполняют двумя способами — “из середины” и “вперед”.
Нивелирование из середины – основной способ. Для измерения превышения точки B над точкой A (рис. 9.1 а) нивелир устанавливают в середине между точками (как правило, на равных расстояниях) и приводят его визирную ось в горизонтальное положение. На точках А и В устанавливают нивелирные рейки. Берут отсчет a по задней рейке и отсчет b по передней рейке. Превышение вычисляют по формуле
Обычно для контроля превышение измеряют дважды – по черным и красным сторонам реек. За окончательный результат принимают среднее.
Если известна высота HA точки А, то высоту HВ точки В вычисляют по формуле
При нивелировании вперед (рис. 9.1 б) нивелир устанавливают над точкой A и измеряют (обычно с помощью рейки) высоту прибора k. В точке B, высоту которой требуется определить, устанавливают рейку. Приведя визирную ось нивелира в горизонтальное положение, берут отсчет b по черной стороне рейки. Вычислив превышение
по формуле (9.1) находят высоту точки В.
На строительной площадке, где на земляных работах, укладке бетона или асфальта и пр. требуется с одной стоянки нивелира определить высоты многих точек, сначала вычисляют общую для всех точек высоту HГИ горизонта инструмента, то есть высоту визирной оси нивелира
а затем – высоты определяемых точек
где 1, 2, … — номера определяемых точек.
Если точки А и В, расположены так, что измерить между ними превышение с одной установки нивелира невозможно, превышение измеряют по частям, то есть прокладывают нивелирный ход (рис. 9.2).
Рис. 9.2. Нивелирный ход
Превышения вычисляют по формулам (см. рис. 9.2):
Превышение между конечными точками хода А и В равно сумме вычисленных превышений
а высота точки В определится по формуле (9.1).
Оставьте свой комментарий
Оставить комментарий от имени гостя
Комментарии
Закрепленные
Понравившиеся
Последние материалы
Заключение (Грунты)
При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8.
Представления о решении задач нелинейной механики грунтов
На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов.
Прочность грунтов при сложном напряженном состоянии
Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем.
Основные закономерности татического деформирования грунтов
За последние 15. 20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…
Упругопластическое деформирование среды и поверхности нагружения
Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…
Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний
При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…
Инварианты напряженного и деформированного состояний грунтовой среды
Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…
О коэффициентах устойчивости и сопоставление с результатами опытов
Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…
Давление грунта на сооружения
Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…
Несущая способность оснований
Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…
Процесс отрыва сооружений от оснований
Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…
Решения плоской и пространственной задач консолидации и их приложения
Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…
Источник
Геометрическое нивелирование
Методы нивелирования
Нивелированием называется измерение превышений с целью определения высот точек. Путем нивелирования значения высот передают от исходных точек с известными высотами на точки, высоты которых надо определить.
В зависимости от применяемых приборов и методов различают следующие виды нивелирования.
Геометрическое нивелирование — метод определения превышений путем взятия отсчетов по вертикальным рейкам при горизонтальном луче визирования. Это — основной метод нивелирования. Методом геометрического нивелирования создана государственная нивелирная сеть, создаются инженерно-геодезические высотные сети различного назначения.
Тригонометрическое нивелирование — метод определения превышения путем измерения вертикального угла и расстояния. Метод используют при создании высотного обоснования топографических съемок, а также при определении превышений и передаче высот на строительных площадках.
Барометрическое нивелирование основано на зависимости между высотой и атмосферным давлением. Для определения превышений измеряют атмосферное давление и температуру в точке с известной высотой и в точках, высоты которых определяют. По разностям давлений вычисляют превышения. Метод применяют при работах в труднодоступной местности, им пользуются геологи, геофизики. Точность измерений этим методом невысокая: на равнинной местности — 0.5 м, в горной — 1.5 м.
Гидростатическое нивелирование основано на свойстве жидкости в сообщающихся сосудах устанавливаться на одном уровне. Простейший гидростатический нивелир представляет собой два сосуда с делениями, соединенные шлангом. Систему заполняют дистиллированной водой. Точность метода очень высокая (0,1 мм), поэтому он применяется при монтаже и выверке конструкций по высоте, особенно при работе в стесненных условиях, при передаче отметок через водные преграды, для наблюдений за деформациями сооружений (плотин, мостов, ускорителей частиц и пр.).
Определение превышений и высот точек с помощью спутниковых измерений. Автономное определение высот точек аппаратурой ГЛОНАСС и GPS выполняется с точностью нескольких метров, а определение превышений между точками — с точностью 10 — 15 мм.
Геометрическое нивелирование выполняют, используя нивелир и нивелирные рейки. Нивелир – прибор, в котором визирный луч приводится в горизонтальное положение. Отсчеты берут по шкалам устанавливаемых вертикально нивелирных реек. Оцифровка шкал на рейках возрастает от пятки рейки вверх. Если на пятке рейки расположен ноль шкалы, то отсчет по рейке равен расстоянию от пятки до луча визирования.
Геометрическое нивелирование выполняют двумя способами — “из середины” и “вперед”.
Рис. 9.1. Нивелирование: а — из середины; б — вперед; ee – исходная уровенная поверхность |
Нивелирование из середины – основной способ. Для измерения превышения точки B над точкой A (рис. 9.1 а) нивелир устанавливают в середине между точками (как правило, на равных расстояниях) и приводят его визирную ось в горизонтальное положение. На точках А и В устанавливают нивелирные рейки. Берут отсчет a по задней рейке и отсчет b по передней рейке. Превышение вычисляют по формуле
Обычно для контроля превышение измеряют дважды – по черным и красным сторонам реек. За окончательный результат принимают среднее.
Если известна высота HA точки А, то высоту HВ точки В вычисляют по формуле
При нивелировании вперед (рис. 9.1 б) нивелир устанавливают над точкой A и измеряют (обычно с помощью рейки) высоту прибора k. В точке B, высоту которой требуется определить, устанавливают рейку. Приведя визирную ось нивелира в горизонтальное положение, берут отсчет b по черной стороне рейки. Вычислив превышение
по формуле (9.1) находят высоту точки В.
На строительной площадке, где на земляных работах, укладке бетона или асфальта и пр. требуется с одной стоянки нивелира определить высоты многих точек, сначала вычисляют общую для всех точек высоту HГИ горизонта инструмента, то есть высоту визирной оси нивелира
а затем – высоты определяемых точек
где 1, 2, … — номера определяемых точек.
Если точки А и В, расположены так, что измерить между ними превышение с одной установки нивелира невозможно, превышение измеряют по частям, то есть прокладывают нивелирный ход (рис. 9.2).
Источник
Способы геометрического нивелирования
ТЕМА 6. НИВЕЛИРОВАНИЕ
Лекция 8:
Задачи и методы нивелирования
Одним из основных видов геодезических работ является нивелирование, имеющий целью определение относительных отметок точек земной поверхности, элементов конструкций, а также их высоты относительно принятой уровенной поверхности.
Нивелирование производится для изучения форм рельефа и определения превышений отдельных точек конструкций и сооружения в целом при проектировании, строительстве и эксплуатации. Результаты этого вида геодезических работ используются при решении различных инженерных и научных задач в целом ряде отраслей, в том числе и оборонного значения.
По видам нивелирование подразделяется на:
Геометрическое нивелирование основано на горизонтальном положении визирного луча, которое задается с помощью инструментов, называемых нивелирами.
Тригонометрическое нивелирование производится наклонным лучом с использованием теодолитов либо тахеометров. В этом случае измеряются углы наклона и расстояния между определяемыми точками.
Физическое нивелирование разделяется на барометрическое, гидростатическое и аэронивелирование.
При барометрическом нивелировании используют барометры, с помощью которых по разности давлений в различных точках определяются превышения между ними.
Гидростатическое нивелирование основано на свойстве поверхности жидкости в сообщающихся сосудах всегда находится на одинаковом уровне.
Аэронивелирование производится с самолета при помощи радио-высотометра и статоскопа, позволяющих определять высоты самолета над земной поверхностью и изменение его высоты в полете; совместное использование этих данных определяет превышения между точками поверхности Земли.
Стереофотограмметрическое нивелирование выполняется путем измерений модели местности, основанное на стереоэффекте при рассматривании двух снимков одной и той же местности (стереопар).
Автоматическое нивелирование производится при помощи приборов, автоматически вычерчивающих профиль местности.
Наиболее точным и употребительным в инженерной практике является геометрическое нивелирование.
Способы геометрического нивелирования
Геометрическое нивелирование является наиболее распространенным и точным видом. С помощью геометрического нивелирования выполняются следующие виды работ:
— создание высотной государственной геодезической сети;
— передача отметок от пунктов высотной опорной сети на строительные площадки;
— при трассировании линейных сооружений;
— передача отметок на монтажные горизонты и дно глубокого котлована;
— наблюдение за вертикальными деформациями зданий и сооружений.
Различают два способа геометрического нивелирования: из середины и вперед. При выполнении первого способа нивелир устанавливают посередине между точками А и В и приводят визирную ось инструмента в горизонтальное положение (рис. 6.1). На точки А и В Вертикально устанавливают рейки с нанесенными делениями. Отсчет делений ведется от нижнего конца (пятки) рейки вверх. Превышение между точками определяют
где а и b – отсчеты по рейкам.
Если нивелирование производится от точки А к точке В, то рейка в точке А будет задней, а в точке В – передней. Следовательно, превышение равно разности отсчетов по задней и передней рейкам.
Второй способ заключается в следующем: нивелир устанавливают над точкой таким образом, чтобы вертикальная линия от окуляра с точкой А (рис. 6.2). Визирную ось приводят в горизонтальное положение, измеряют высоту i инструмента и берут отсчет b по рейке. В этом случае
т.е. превышение равно высоте инструмента минус отсчет по передней рейке.
Если известна отметка точки А и определено превышение точки В над точкой А,то из рис. 6.1 следует
Очень часто возникает необходимость вычислять отметки точек через горизонт инструмента ГИ. Горизонтом инструмента называется расстояние по вертикали от уровенной поверхности до визирного луча и согласно рис 6.1
. (6.4)
Для схемы на рис. 6.2 горизонт инструмента определится
. (6.5)
Отметка точки В получается
, (6.6)
т.е. отметка точки равна горизонту инструмента минус отсчет на данную точку.
Для передачи отметок на значительные расстояния, а также для составления профиля местности нивелируемая линия АС (рис. 6.3) разбивается на отрезки, каждый из которых нивелируется с одной постановки инструмента, которая называется станцией. Установив нивелир в точке К1,получают превышение точки 1относительно точки А:
|
Далее последовательно определяют h2, h3 . между точками 2и 1, 3и 2и т.д. Таким образом, превышение конечной точки над первой равно сумме отсчетов по задней рейке минус сумма отсчетов по передней
. (6.8)
Отметка точки С будет
. (6.9)
Точки нивелирного хода, через которые происходит последовательная передача отметок, называются связующими. В том случае, если последовательное нивелирование производится для составления профиля, возникает необходимость определять отметки характерных точек местности. Такие точки, расположенные между связующими, называются промежуточными или плюсовыми, и не участвуют в передаче отметок. Они обозначаются числом метров, соответствующим расстоянию от задней точки до промежуточной, (+71 на станции К2 и +66на последней станции).
Источник