Генеральная совокупность выборка репрезентативность выборки способы выборки

Простыми словами о выборке

Привет. Я UX-исследователь в СКБ Контур. Чаще всего в работе я использую качественные методы исследований — глубинные интервью и модерируемые юзабилити-тестирования. Количественные исследования без подготовленной инфраструктуры со стороны разработки более ресурсозатратные, поэтому самостоятельно их провести сложнее.

Но самое сложное для меня в проведении количественного исследования — это выборка. Мне ближе гуманитарная сторона исследовательской работы, поэтому разобраться в выборке сложнее, чем в техниках ведения интервью. Если у тебя такая же проблема, эта статья будет полезна.

Ниже я попробовала просто рассказать о выборке, репрезентативности и методах отбора при проведении количественного исследования.

Выборка и репрезентативность

Опрос — это количественный метод, направленный на получение точной, объективной и статистически значимой информации. Если качественные методы помогают в формулировке гипотез, то количественные — масштабируют и проверяют эти гипотезы на всей целевой аудитории.

Поэтому важно проводить отбор респондентов таким образом, чтобы выборочная совокупность отражала состав всей генеральной совокупности.

В социологии есть термин — единица наблюдения. Это может быть один человек, группа или сообщество в зависимости от целей исследования.

Генеральная совокупность — это вся совокупность единиц наблюдения, имеющих отношение к теме исследования.

Например, если ты проводишь продуктовое исследование, то скорее всего твоя генеральная совокупность — это все пользователи сервиса или определенный сегмент.

Выборочная совокупность — часть генеральной совокупности, которую вы изучаете в ходе исследования с помощью разработанных вами инструментов (анкета, гайд и прочее).

Например, в ходе исследования было опрошено 400 респондентов среди всех пользователей сервиса. Это твоя выборочная совокупность.

Выборка должна быть репрезентативной, иначе результаты количественного исследования будут сомнительными.

Репрезентативность — обеспечение в выборочной совокупности наличия всех видов единиц генеральной совокупности в достаточном количестве.

Репрезентативность имеет качественное и количественное выражение. Качественная репрезентация обязывает включить в выборку все возможные варианты респондентов, особенно, если какой-то признак влияет на опыт использования сервиса.

Например, выборка не будет репрезентативной если ты опросишь только новых пользователей (если это не оправдано целями исследования). Особенно это исказит результаты исследования, если длительность использования напрямую влияет на проверку гипотезы.

На практике, особенно в онлайн-опросах, качественная репрезентативность может страдать. Ею можно пренебречь, если вы уверены, что на проверку гипотезы не повлияет принадлежность респондента к той или иной группе. Онлайн-опросы предполагают стихийную выборку и поэтому предусмотреть присутствие всех типов респондентов сложно. Про стихийную выборку подробнее я расскажу ниже.

Чтобы соблюсти количественную репрезентацию нужно обеспечить достаточное число респондентов, в том числе по каждой группе внутри выборки.

Например, если ты пригласишь на опрос 80% новых пользователей и лишь 20% пользователей с опытом — это тоже исказит результаты (опять же если это не предусмотрено дизайном исследования).

И, конечно, для того, чтобы масштабировать результаты опроса на всю генеральную совокупность (в нашем примере — на всех пользователей), нужно в целом рассчитать количество человек, которое ты планируешь пригласить для прохождения опроса.

Что значит «достаточное» количество человек для выборки.

К примеру, если проводить исследование на выборке в 50–100 человек, то погрешность в репрезентативности полученной информации будет выше, чем при опросе 800–1000 человек.

Но увеличивать до бесконечности число опрашиваемых нет смысла. После определенного количества респондентов ошибка выборки остановится на одном уровне.

Ошибка выборки — разность между характеристиками выборочной и генеральной совокупности. Это отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.

Где-то после 400 респондентов ошибка выборки не меняется. Поэтому обычно в опросах выборочная совокупность составляет 300–400 человек. При таком значении ты можешь уверенно переносить результаты исследования на всю аудиторию при соблюдении качественной репрезентации и корректно составленной анкеты.

Читайте также:  Найдет тысячу способов как

Если генеральная совокупность небольшая, то и выборочная совокупность будет меньше стандартных 300–400 респондентов.

Если хочешь разобраться с формулой расчета выборки подробнее про нее можно узнать здесь.

Также ты можешь провести сплошной опрос. При сплошном опросе ты опрашиваешь всю генеральную совокупность.

Например, если есть интересный и немногочисленный сегмент пользователей (30–100 человек), ты можешь опросить их всех. Или это стартап и уже есть первые пользователи. В таком случае тоже можно провести опрос по всей генеральной совокупности.

На практике требованиями количественной репрезентации иногда пренебрегают в силу нехватки ресурсов на обзвон (если это телефонный опрос) или времени на сбор ответов. Или если опрос проводят для сбора гипотез, а не для принятия конечного решения.

Здесь важно понимать, какое решение должно быть принято на основе исследования. Если это важный продуктовый или бизнес-вопрос, то лучше потратить время и деньги на проверку гипотезы с репрезентативной выборкой, чтобы не получить неверные выводы. А если, это, к примеру, опрос для сбора отклика по новой фиче, то можно остановиться на 30–60 респондентах. Основные выводы ты сделаешь, а пользователи по мере работы в сервисе расскажут о том, что ты мог пропустить.

Методы отбора

В количественном исследовании по сравнению с качественным не важно кто перед тобой, потому что все выводы строятся по совокупности ответов респондентов и материал собирается в обезличенном виде. Поэтому в идеале в выборку респонденты должны попадать случайным образом, чтобы сделать результаты максимально свободными от искажений.

Чтобы этого достичь можно использовать один из методов формирования выборки.

Случайные выборки

Они предполагают, что в выборке каждый элемент генеральной совокупности имеет заранее заданную вероятность быть отобранным в исследование.

Простая случайная выборка. Сначала нужно присвоить каждому потенциальному респонденту идентификационный номер. Дальше с помощью генератора случайных чисел определить номера, которые будут включены в выборку для опроса.

Механическая выборка. Как и в простой выборке пользователям присваивается порядковый номер. Только отбор происходит не с помощью генератора случайных чисел, а с шагом равным n. Например, каждый сотый.

Стратифицированная выборка. Для такой выборки нужно поделить генеральную совокупность на сегменты или страты. После чего респонденты внутри каждой группы отбираются случайным образом. Из каждого сегмента выделяют пользователей пропорционально их доле в генеральной совокупности.

Кластерный отбор или гнездовая выборка. Группа потенциальных респондентов отбирается случайным образом из всей генеральной совокупности. Далее внутри этой группы опрашиваются все пользователи. Например, можно опросить всех пользователей, которые зарегистрировались в сервисе в прошлом квартале.

При таком отборе риск искажений выше и важно учитывать внешние и внутренние факторы. Может быть в прошлом квартале в жизни пользователей произошло что-то важное, что повлияло на их желание воспользоваться сервисом. Тогда эта группа будет сильно отличаться от генеральной совокупности.

Неслучайные выборки

Обычно такие методы отбора применяют, если нет возможности или ресурсов для формирования случайной выборки. Например, у тебя мало времени на опрос или нет данных о генеральной совокупности или респонденты труднодоступны.

Квотная выборка. Такой метод можно применять, если у вас есть знания о составе генеральной совокупности. Например, вы знаете, как ваши пользователи распределяются в разрезе по должности, отрасли компании, возрасту и так далее. Тогда можно пропорционально этим долям сформировать выборку: в каждом разрезе выбрать такое число респондентов, которое будет отображать статистику по всей аудитории.

Стихийная выборка. Это метод без особых правил. В опрос попадают все, кто захочет пройти опрос. Такая выборка типична для онлайн-опросов, размещенных в свободном доступе.

Читайте также:  Как защитить клубнику от птиц проверенные способы своими руками

«Снежный ком». Тоже достаточно популярная и простая методика. Каждого респондента просят порекомендовать нового среди его друзей, коллег и знакомых, которые подходили бы под параметры исследования. Такая выборка часто применяется когда самостоятельно найти интересующих респондентов затруднительно. Например, пользователи, занимающие высокую должность или с высоким доходом.

«Типичный представитель». Из генеральной совокупности отбираются респонденты с типичными признаками целевой аудитории. Только определить, что взять за такой признак, обычно сложно.

Отдельно стоит сказать про многоступенчатые выборки. На практике чаще всего (иногда интуитивно) исследователи используют как раз многоступенчатый метод. Такой отбор предполагает наличие двух или более этапов формирования выборки. Проще говоря, это микс нескольких методов отбора.

Например, ты собрал статистику по своей аудитории и знаешь, что большинство пользователей находятся в Москве. Это будет первая ступень отбора по «типичному представителю». Далее среди пользователей-москвичей ты приглашаешь на опрос каждого сотого (механическая выборка).

Проводя количественное исследование, не забывай о репрезентативности и продумывай подходящий метод отбора респондентов. Хорошая подготовка — половина успеха.

Источник

Генеральная совокупность выборка репрезентативность выборки способы выборки

1. Задачи математической статистики.

3. Способы отбора.

4. Статистическое распределение выборки.

5. Эмпирическая функция распределения.

6. Полигон и гистограмма.

7. Числовые характеристики вариационного ряда.

8. Статистические оценки параметров распределения.

9. Интервальные оценки параметров распределения.

1. Задачи и методы математической статистики

Математическая статистика — это раздел математики, посвященный методам сбора, анализа и обработки результатов статистических данных наблюдений для научных и практических целей.

Пусть требуется изучить совокупность однородных объектов относительно некоторого качественного или количественного признака, характеризующего эти объекты. Например, если имеется партия деталей, то качественным признаком может служить стандартность детали, а количественным- контролируемый размер детали.

Иногда проводят сплошное исследование, т.е. обследуют каждый объект относительно нужного признака. На практике сплошное обследование применяется редко. Например, если совокупность содержит очень большое число объектов, то провести сплошное обследование физически невозможно. Если обследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование не имеет смысла. В таких случаях случайно отбирают из всей совокупности ограниченное число объектов (выборочную совокупность) и подвергают их изучению.

Основная задача математической статистики заключается в исследовании всей совокупности по выборочным данным в зависимости от поставленной цели, т.е. изучение вероятностных свойств совокупности: закона распределения, числовых характеристик и т.д. для принятия управленческих решений в условиях неопределенности.

Генеральная совокупность – это совокупность объектов, из которой производится выборка.

Выборочная совокупность (выборка) – это совокупность случайно отобранных объектов.

Объем совокупности – это число объектов этой совокупности. Объем генеральной совокупности обозначается N , выборочной – n .

Если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N = 1000, а объем выборки n = 100.

При составлении выборки можно поступить двумя способами: после того, как объект отобран и над ним произведено наблюдение, он может быть возвращен либо не возвращен в генеральную совокупность. Т.о. выборки делятся на повторные и бесповторные.

Повторной называют выборку, при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность.

Бесповторной называют выборку, при которой отобранный объект в генеральную совокупность не возвращается.

На практике обычно пользуются бесповторным случайным отбором.

Для того, чтобы по данным выборки можно было достаточно уверенно судить об интересующем признаке генеральной совокупности, необходимо, чтобы объекты выборки правильно его представляли. Выборка должна правильно представлять пропорции генеральной совокупности. Выборка должна быть репрезентативной (представительной).

В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществлять случайно.

Если объем генеральной совокупности достаточно велик, а выборка составляет лишь незначительную часть этой совокупности, то различие между повторной и бесповторной выборками стирается; в предельном случае, когда рассматривается бесконечная генеральная совокупность, а выборка имеет конечный объем, это различие исчезает.

Читайте также:  Способы народного лечения кандидоза

В американском журнале «Литературное обозрение» с помощью статистических методов было проведено исследование прогнозов относительно исхода предстоящих выборов президента США в 1936 году. Претендентами на этот пост были Ф.Д. Рузвельт и А. М. Ландон. В качестве источника для генеральной совокупности исследуемых американцев были взяты справочники телефонных абонентов. Из них случайным образом были выбраны 4 миллиона адресов., по которым редакция журнала разослала открытки с просьбой высказать свое отношение к кандидатам на пост президента. Обработав результаты опроса, журнал опубликовал социологический прогноз о том, что на предстоящих выборах с большим перевесом победит Ландон. И … ошибся: победу одержал Рузвельт.
Этот пример можно рассматривать, как пример нерепрезентативной выборки. Дело в том, что в США в первой половине двадцатого века телефоны имела лишь зажиточная часть населения, которые поддерживали взгляды Ландона.

На практике применяются различные способы отбора, которые можно разделить на 2 вида:

1. Отбор не требует расчленения генеральной совокупности на части (а) простой случайный бесповторный; б) простой случайный повторный).

2. Отбор, при котором генеральная совокупность разбивается на части. (а) типичный отбор; б) механический отбор; в) серийный отбор).

Простым случайным называют такой отбор, при котором объекты извлекаются по одному из всей генеральной совокупности (случайно).

Типичным называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типичной» части. Например, если деталь изготавливают на нескольких станках, то отбор производят не из всей совокупности деталей, произведенных всеми станками, а из продукции каждого станка в отдельности. Таким отбором пользуются тогда, когда обследуемый признак заметно колеблется в различных «типичных» частях генеральной совокупности.

Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект. Например, если нужно отобрать 20 % изготовленных станком деталей, то отбирают каждую 5-ую деталь; если требуется отобрать 5 % деталей- каждую 20-ую и т.д. Иногда такой отбор может не обеспечивать репрезентативность выборки (если отбирают каждый 20-ый обтачиваемый валик, причем сразу же после отбора производится замена резца, то отобранными окажутся все валики, обточенные затупленными резцами).

Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергают сплошному обследованию. Например, если изделия изготавливаются большой группой станков-автоматов, то подвергают сплошному обследованию продукцию только нескольких станков.

На практике часто применяют комбинированный отбор, при котором сочетаются указанные выше способы.

4. Статистическое распределение выборки

Пусть из генеральной совокупности извлечена выборка, причем значение x1 –наблюдалось раз, x2-n2 раз,… xk — nk раз. n = n1+n2+. +nk– объем выборки. Наблюдаемые значения называются вариантами, а последовательность вариант, записанных в возрастающем порядке- вариационным рядом. Числа наблюдений называются частотами (абсолютными частотами), а их отношения к объему выборки — относительными частотами или статистическими вероятностями.

Если количество вариант велико или выборка производится из непрерывной генеральной совокупности, то вариационный ряд составляется не по отдельным точечным значениям, а по интервалам значений генеральной совокупности. Такой вариационный ряд называется интервальным. Длины интервалов при этом должны быть равны.

Статистическим распределением выборки называется перечень вариант и соответствующих им частот или относительных частот.

Статистическое распределение можно задать также в виде последовательности интервалов и соответствующих им частот (суммы частот, попавших в этот интервал значений)

Точечный вариационный ряд частот может быть представлен таблицей:

Источник

Оцените статью
Разные способы