Газы способ образования носителей

Электрический ток в различных средах, 11 класс
презентация к уроку по физике (11 класс) по теме

Презентация для закрепения

Скачать:

Вложение Размер
elektricheskiy_tok_v_razlichnyh_sredah.pptx 112.4 КБ

Предварительный просмотр:

Подписи к слайдам:

Электрический ток в различных средах.

Электрическим током называют всякое упорядоченное движение электрических зарядов. Электрический ток может проходить через различные вещества при определенных условиях. Условие возникновения электрического тока -наличие свободных зарядов, способных двигаться под действием электрического поля.

Металлы Полупроводники Вакуум Газ Жидкость Носители 2. Способ образования носителей 3. Особенности протекания тока в среде 4. Применение в науке и технике

Электрический ток в металлах. Вне электрического поля свободные электроны движутся хаотически, подобно молекулам идеального газа, а потому рассматриваются в классической электронной теории как электронный газ . Электрический ток в металлах — это упорядоченное движение электронов.

Металлы Полупроводники Вакуум Газ Жидкость Носители Электроны 2. Способ образования носителей Обобществление валентных электронов 3. Особенности протекания тока в среде Сверхпроводимость 4. Применение в науке и технике Провода, проводники, нагревательные элементы

Электрический ток в полупроводниках. Проводимость, обусловленную движением свободных электронов и равного им количества «дырок» в полупроводниковом кристалле без примесей, называют собственной проводимостью полупроводника .

Металлы Полупроводники Вакуум Газ Жидкость Носители Электроны Электроны и дырки 2. Способ образования носителей Обобществление валентных электронов Разрыв ковалентных связей, внесение примеси 3. Особенности протекания тока в среде Сверхпроводимость Разнообразие приборов 4. Применение в науке и технике Провода, проводники, нагревательные элементы Диоды, транзисторы, микросхемы

Электрический ток в вакууме. Энергию, большую или равную работе выхода, электроны могут получить при разогреве металла до высоких температур. Испускание электронов из металлов при его нагревании называют термоэлектронной эмиссией .

Металлы Полупроводники Вакуум Газ Жидкость Носители Электроны Электроны и дырки Электроны 2. Способ образования носителей Обобществление валентных электронов Разрыв ковалентных связей, внесение примеси Термоэлектронная эмиссия 3. Особенности протекания тока в среде Сверхпроводимость Разнообразие приборов Скорость движения электронов велика 4. Применение в науке и технике Провода, проводники, нагревательные элементы Диоды, транзисторы, микросхемы Электронно-лучевая трубка, кинескоп

Электрический ток в газах. Для ионизации молекул необходимо затратить энергию — энергию ионизации , количество которой зависит от рода вещества. Электрический ток в газах — это упорядоченное движение ионов и электронов под действием электрического поля.

Металлы Полупроводники Вакуум Газ Жидкость Носители Электроны Электроны и дырки Электроны Ионы и электроны 2. Способ образования носителей Обобществление валентных электронов Разрыв ковалентных связей, внесение примеси Термоэлектронная эмиссия Ионизация и ударная ионизация 3. Особенности протекания тока в среде Сверхпроводимость Разнообразие приборов Скорость движения электронов велика Самостоятельный и несамостоят . разряды, плазма 4. Применение в науке и технике Провода, проводники, нагревательные элементы Диоды, транзисторы, микросхемы Электронно-лучевая трубка, кинескоп Коронный,искровой , дуговой и тлеющий разряды

Электрический ток в жидкостях(растворах и расплавах электролитов). Явление распада молекул солей, щелочей и кислот в воде на ионы противоположных знаков называют электролитической диссоциацией.

электрический ток в растворах (расплавах) электролитов — это направленное перемещение ионов обоих знаков в противоположных направлениях. Прохождение электрического тока через раствор электролита всегда сопровождается выделением на электродах веществ, входящих в его состав. Это явление называют электролизом .

Металлы Полупроводники Вакуум Газ Жидкость Носители Электроны Электроны и дырки Электроны Ионы и электроны Ионы 2. Способ образования носителей Обобществление валентных электронов Разрыв ковалентных связей, внесение примеси Термоэлектронная эмиссия Ионизация и ударная ионизация Электролитическая диссоциация 3. Особенности протекания тока в среде Сверхпроводимость Разнообразие приборов Скорость движения электронов велика Самостоятельный и несамостоят . разряды, плазма Перенос вещества 4. Применение в науке и технике Провода, проводники, нагревательные элементы Диоды, транзисторы, микросхемы Электронно-лучевая трубка, кинескоп Коронный,искровой , дуговой и тлеющий разряды Получение Al ,гальваностегия, рафинирование меди

По теме: методические разработки, презентации и конспекты

Интегрированный рок в 10 классе «Электрический ток в различных средах»

Развитие креативного и творческого мышления путём применения элементов ТРИЗ при решении нестандартных задач по теме «Электрический ток в различных средах».

План-конспект урока по физике «Электрический ток в различных средах». 10 класс

Презентация «Электрический ток в различных средах.Действия электрического тока.»

Презентация к уроку физики в 8 классе «Электрический ток в различных средах.Действия электрического тока».

Урок по физике «Электрический ток в различных средах.Действия электрического тока.»

домашнее задание проверяется в виде соревнования,затем идёт ииследовательская работа с самостоятельными выводами.В ходе урока используется приём для формирования самооценки учащихся»Копилка хороших от.

Конспект урока по физике в 10 классе по теме «Электрический ток в различных средах»

Урок повторения, обобщения, систематизации учебного материала по теме «Электрический ток в различных средах». На уроке проводится обобщающее повторе­ние основных вопросов темы «Электрический ток .

Урок физики в 10 классе «Электрический ток в различных средах» Тип урока: повторение, обобщение и систематизация знаний Дидактическая цель: создать условия для активного структурирования систематизации и обобщения знаний и умений по теме «Электриче

Урок физики в 10 классе«Электрический ток в различных средах».

Зачётный материал по физике для 11 класса вечерней школы по теме «Электрический ток в различных средах».

Зачётный материал по физике для 11 класса вечерней школы по теме «Электрический ток в различных средах».

Источник

Методика изучения, контроля и систематизации знаний при изучении темы «Электрический ток в разных средах»

Разделы: Физика

При изучении темы «Электрический ток в средах» целесообразно использовать составление таблицы, дающей возможность сопоставить механизм прохождения тока в различных средах, выявить различия и общие черты данного явления, применение его на практике (см. табл.1).

Составление таблицы возможно на любом этапе изучения темы в зависимости от образовательного уровня учащихся, подготовки учителя и цели, которую ставит перед собой учитель.

Рассмотрим работу с таблицей на разных этапах изучения темы.

1. Составление таблицы можно начать на первом уроке. Опираясь на знания, полученные учащимися при изучении темы «Электрический ток» в курсе физики 8 класса, целесообразно напомнить им, что все вещества делятся на проводники и диэлектрики условно по количеству свободных носителей зарядов, напомнить условия протекания тока. Далее с помощью демонстраций учащимся показывается, что электрический ток можно получить в любой среде, подчеркнув, что во всех случаях для прохождения тока через среду в ней нужно создать электрическое поле, но в одних средах ток начинается сразу, т.к. в них есть свободные носители заряда, а в других носители заряда надо создать тем или иным способом.

1) Свечение лампы — ток в металлах.
2) Несамостоятельный разряд в газах — ток в газах.
3) Прохождение тока через раствор соли — ток в жидкостях.
4) Проводимость полупроводников при нагревании и освещении.
5) Работа вакуумного диода — ток в вакууме.

Затем, перед учащимися ставится задача изучить механизм появления, свойства и поведение носителей зарядов в различных средах, и практическое применение тока в этих средах в быту и технике. При этом сразу выстраивается план изучения темы в виде заполнения первой горизонтальной и первой вертикальной строк таблицы.

В дальнейшем возможно в хорошо подготовленных классах заполнение таблицы проводить горизонтальными строками. При этом четко просматриваются сходства и различия в проводимости различных сред. Такой подход позволяет развивать мыслительную способность учащихся, способность сравнивать, анализировать, обобщать.

2. В менее подготовленных классах заполнение таблицы можно проводить вертикальными столбцами по мере изучения механизма проводимости различных сред. При этом целесообразно после изучения темы «электрический ток в металлах» вместе с учащимися выделить основные компоненты (пункты) рассказа о данном явлении, поместив их в первую вертикальную колонку таблицы.

3. Возможно заполнение таблицы вместе с учащимися на уроке обобщения темы с использованием доски. При этом отдельные учащиеся заполняют и объясняют каждый свою колонку. ( В слабом классе это может делать сам учитель с помощью учеников).

4. И, наконец, заполнение таблицы можно предоставить учащимся в конце изучения темы как самостоятельную, контрольную или домашнюю работ .

Среда Металлы Полупроводники Жидкости Вакуум Газы
Носители заряда Электроны Электроны и дырки Ионы Электроны Ионы и электроны
Образование носителей заряда При образовании кристалла валентные электроны теряют связь с ядром атома и становятся свободными. При разрыве ковалентных связей между атомами в результате нагревания кристалла или под действием света образуются свободные электроны и дырки — вакантные места в связях. При взаимодействии молекул жидкости с молекулами растворителя или при взаимодействии друг с другом в результате нагревания молекулы распадаются на ионы. При нагревании металла с его поверхности вылетают самые быстрые электроны — термоэлектронная эмиссия. Под действием ионизатора или в результате тепловых столкновений молекулы газов теряют один или два электрона, становясь положительными ионами. Электрон остается свободным или присоединяется к нейтральному атому образуя отрицательный ион.
Способ создания электрического поля. Присоединение к проводнику источника тока. Присоединение полупроводникового элемента к источнику тока Введение в раствор электролитов электродов Введение в вакуумное пространство электродов. Введение в газовое пространство электродов.
Движение заряженных частиц в средах Электроны двигаются к положительному электроду. Электроны двигаются к положительному полюсу источника тока, дырки — к отрицательному Положительные ионы двигаются к катоду, отрицательные ионы — к аноду Электроны двигаются к аноду Положительные ионы двигаются к катоду, электроны и отрицательные ионы — к аноду
Вольтамперная характеристика
Основные законы

— — Применение В электронагревательных и осветительных приборах, электродвигателях, для подведения тока к любому электрическому устройству В радиотехнике для выпрямления тока, для изменения его характеристик, получения тока в солнечных батареях, в различного рода реле и автоматических устройствах Покрытие одних металлов другими, для получения чистых веществ, для заточки хирургических инструментов, для получения копий с рельефных изображений и т.д. В радиотехнике для выпрямления тока и изменения его характеристик, в электронно-лучевых трубках, используемых в телевидении, осциллографах, медицинских приборах и т.д. В лампах дневного света, рекламных трубках, электросварке, при искровой обработке металлов и т.д.

В классе, где у учащихся развито образное мышление, можно во второй, третьей и четвертой горизонтальных строчках таблицы заменить текст соответствующими рисунками (см. табл.2).

Источник

Газы способ образования носителей

Электрический ток в металлах

Металлы являются хорошими проводниками электричества. Это обусловлено их внутренним строением. У всех металлов внешние валентные электроны слабо связаны с ядром, и при объединении атомов в кристаллическую решетку эти электроны становятся общими, принадлежащими всему куску металла.

Носителями заряда в металлах являются электроны .

Электроны в металлах при помещении их в электрическое поле движутся с постоянной средней скоростью, пропорциональной напряженности поля.

Зависимость сопротивления проводника от температуры

При повышении температуры у электронов проводимости увеличивается скорость теплового движения, что приводит к увеличению частоты столкновений с ионами кристаллической решетки и, тем самым, к росту сопротивления.

Сверхпроводимость – явление резкого уменьшения до нуля сопротивления проводника при охлаждении до критической температуры (зависящей от рода вещества).

Сверхпроводимость – это квантовый эффект. Объясняется он тем, что при низких температурах макроскопическое число электронов ведут себя как единый объект. Они не могут обмениваться с кристаллической решеткой порциями энергии, меньшими их энергии связи, поэтому рассеивания тепловой энергии не происходит, что и означает отсутствие сопротивления.

Такое объединение электронов возможно при образовании ими бозонных (куперовских) пар – коррелированного состояния электронов с противоположными спинами и импульсами.

Эффект Мейснера – вытеснение магнитного поля из сверхпроводника. Внутри проводника в сверхпроводящем состоянии циркулируют незатухающие токи, создающие магнитное поле, противоположное внешнему. Сильное магнитное поле разрушает сверхпроводимость.

Электрический ток в жидкостях

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. Хлор выделяется на аноде в виде пузырьков.

Закон электролиза был экспериментально установлен английским физиком М. Фарадеем в 1833 году (закон Фарадея)

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

m – масса выделившегося в результате электролиза чистого вещества

k – электрохимический эквивалент вещества

Здесь NA – постоянная Авогадро, M = m0NA – молярная масса вещества,
F = eNA=96485 Кл/мольпостоянная Фарадея

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества

Закон Фарадея для электролиза

Электрический ток в газах

При обычных условиях все газы являются диэлектриками, то есть не проводят электрического тока. Этим свойством объясняется, например, широкое использование воздуха в качестве изолирующего вещества. Принцип действия выключателей и рубильников как раз и основан на том, что размыкая их металлические контакты, мы создаем между ними прослойку воздуха, не проводящую ток.

Однако при определенных условиях газы могут становиться проводниками. Например, пламя, внесенное в пространство между двумя металлическими дисками (см. рисунок), приводит к тому, что гальванометр отмечает появление тока. Отсюда следует вывод: пламя, то есть газ, нагретый до высокой температуры, является проводником электрического тока.

Нагревание – не единственный способ превращения газа в проводник. Вместо пламени можно использовать ультрафиолетовое или рентгеновское излучение, а также поток альфа-частиц или электронов. Опытами установлено, что действие любой из этих причин приводит к ионизации молекул газа.

Прохождение тока через газы называют газовым разрядом. Только что мы рассмотрели пример так называемого несамостоятельного разряда. Он так называется потому, что для его поддержания требуется какой-либо ионизатор – пламя, излучение или поток заряженных частиц. Опыты показывают, что если ионизатор устранить, то ионы и электроны вскоре воссоединяются (говорят: рекомбинируют), вновь образуя электронейтральные молекулы. В результате газ перестает проводить ток, то есть становится диэлектриком.

Самостоятельная и несамостоятельная проводимость газов

Для того чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда – заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне – несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами – самостоятельная проводимость.

В случае несамостоятельной проводимости, при небольших значениях U график имеет вид прямой, т.е. закон Ома приближенно сохраняет силу; с ростом U кривая загибается с некоторого напряжения и переходит в горизонтальную прямую.

Это означает, что начиная с некоторого напряжения, ток сохраняет постоянное значение, несмотря на увеличение напряжения. Это постоянное, не зависящее от напряжения значение силы тока называют током насыщения.

Несамостоятельный газовый разряд – разряд, существующий только под действием внешних ионизаторов.

При увеличении напряжения возникает ударная ионизация – явление выбивания электронов из нейтральных молекул – число носителей заряда увеличивается лавинообразно. Возникает самостоятельный разряд.

Самостоятельный газовый разряд – разряд, существующий после удаления внешних ионизаторов.

Процессы, влияющие на проводимость газов

Термическая ионизация – при столкновении нейтральных атомов происходит выбивание электронов и превращение атомов в положительные ионы

Ионизация излучением (фотоионизация) – распад атома на электрон и положительный ион под действием света

Ионизация электронным ударом – выбивание ускоренным электроном из атома электрона с образованием положительного иона

Вторичная электронная эмиссия с катода – выбивание положительными ионами электронов из катода

Термоэлектронная эмиссия – излучение нагретым металлом электронов

Тлеющий разряд: При давлении газа в несколько десятых миллиметра ртутного столба разряд имеет типичный вид, схематически изображённый на рис. Это ток в ионизированном газе, а точнее сказать в низкотемпературной плазме. Тлеющий разряд образуется при прохождении тока через разряженный газ. Как только напряжение превосходит определённое значение, газ в колбе ионизирует и происходит свечение. Это уже по сути электрический ток не столько в газе, сколько в плазме. Цвет свечения газа (плазмы) зависит от вещества газа.

Искровой разряд: При достаточно большой напряженности поля (около 3 МВ/м) между электродами появляется электрическая искра, имеющая вид ярко светящегося извилистого канала, соединяющего оба электрода. Газ вблизи искры нагревается до высокой температуры и внезапно расширяется, отчего возникают звуковые волны, и мы слышим характерный треск. Происходит при обычных условиях, при обычном атмосферном давлении, точно также как и тлеющий разряд происходит в следствие ионизации газа, но при высоком напряжении, в отличии от дугового разряда, где в первую очередь важна высокая плотность тока.

Коронный разряд: происходит в сильном электрическом поле с высокой напряжённостью, достаточной, чтобы вызвать ионизацию газа (или жидкости). Электрическое поле при этом бывает не однородным, где-то напряжённость значительно больше. Образуется градиент (различие) потенциалов поля и там где потенциал больше, ионизация газа идёт сильнее, интенсивнее, затем поток ионов доходит до другой части поля, тем самым образуя поток электричества. В результате образуется коронный газовый разряд причудливых форм, в зависимости от геометрии проводников — источников напряжённости поля.

Дуговой разряд: представляет собой электрический пробой газа, которой в дальнейшем становится постоянным плазменным разрядом — дугой, образуется электрическая дуга. Дуговой разряд характеризуется более низким напряжением, чем тлеющий разряд. Поддерживается в основном за счёт термоэлектронной эмиссии, когда из электродов высвобождаются электроны. Старое название такой дуги «вольтовая дуга». Отличительной особенностью такой дуги является высокая плотность тока и низкое напряжение, которое ограничено источником тока. Для того, чтобы создать такую дугу, электроды сближаются, происходит пробой, а затем они раздвигаются.

Источник

Читайте также:  Сапоги мои скрип да скрип под березою каким способом образованы
Оцените статью
Разные способы