- Три способа получить энергию из соли
- Бактериальное золото
- Как устроено производство биотоплива, и какие проблемы оно решает
- Что такое биотопливо
- Виды биотоплива
- Твердое биотопливо
- Жидкое биотопливо
- Газообразное биотопливо
- Плюсы и минусы биотоплива
- Преимущества:
- Недостатки:
- Где используется биотопливо
- Перспективы биотоплива
Три способа получить энергию из соли
В 21 веке соль на вооружение берут не только домохозяйки, но и альтернативная энергетика. Об одной из возможностей использования соли для получения и аккумуляции энергии на FacePla.net уже повествовал — речь заходила об электростанции «Gemasolar» в Андалусии. Сегодня эту технологию применили и США: компания «SolarReserve» завершила строительство солнечной электростанции «Crescent Dunes Solar Energy Project» вблизи Лас-Вегаса.
Эта электростанция сделает «город ночных огней» более экологичным, обеспечивая развлекательный центр страны безопасно добытым электричеством. Согласно рассчётам «SolarReserve», новая электростанция будет производить до 110 МВт электричества к концу следующего года.
Здесь будет использоваться вся мощь расплавленной при температуре более 1000°F (538°C) соли – соединения натрия и нитрата калия. Чтобы нагреть минералы, размещённые в специальном резервуаре, необходимо сконцентрировать отражение солнца с нескольких тысяч зеркал (гелиостатов) размером более 30 метров, размещённых по кругу на расстоянии нескольких километров. Жидкая соль посредством парогенератора приводит во вращение турбину, вырабатывающую электричество. Когда соль остывает – её снова и снова можно «перезаряжать», и, кроме того, в отличие от обычных аккумуляторов, в этой системе нет ничего токсичного. Хранить тепло соль может достаточно долго, чтобы суметь отдавать его ночью – когда солнце уже давно скрылось за горизонтом.
В Южной Америке тоже активно интересуются преимуществами использования соли – и не удивительно, ведь полноводная Амазонка и её подземная сестра Хамза несут к побережью Бразилии миллионы галлонов пресной воды, которые смешиваются с солёными водами Атлантического океана. Именно здесь, на границе двух типов воды, образуется пока что не использованный, но колоссально многообещающий природный аккумулятор энергии. Исследователи из Стэнфордского университета (Калифорния) подсчитали, что с каждого литра пресной воды, впадающей в море, можно получить 2,2 кДж энергии. Это значит, что если бы человечество начало использовать подобным образом устья всех рек Земли, это обеспечило бы нам целых 13% энергии в мире.
Как этого добиться? – Технология известна в теории уже давно, но из-за дороговизны компонентов на практике применения до сих пор не находила. В основе процесса получения энергии лежит реверсивный электродиализ (reverse electrodialysis, RED). Между слоями солёной и пресной воды помещают слои ионных мембран: они не позволяют смешиваться воде, но и не мешают прохождению сквозь них ионов. Процесс электролиза воды начинается при разности потенциалов в 1,8 Вольта – это возможно при использовании 25 ионных мембран и системы насосов для подачи на них воды под давлением. Пока всё это остаётся теорией, но при таком потенциале идея явно не пролежит долго «под сукном».
Уже создан и альтернативный вариант – он рассчитан не пресные реки, а на… сточные воды. Правда, по задуму Национального университета Пенсильвании, в этих «реках» жизнь тоже будет бить ключом: ведь для выработки энергии кроме сточных вод вблизи соленых водоемов, содержащих большое количество органических веществ и целлюлозы, потребуются специальные бактерии, продуцирующие водород.
Эта технология так же опирается на реверсивный электродиализ, однако благодаря сотрудничеству RED с каталитическими свойствами микроорганизмов потребуется уже не 25, а лишь 5 ионных мембран для запуска процесса электролиза. Такие энергетические ячейки способны выработать из до 1,6 кубометра водорода в день. При этом на работу насосов будет расходоваться не более 1% полученного из топлива электричества. Брюс Логан (Bruce Logan), глава исследований, считает подобную систему если не вечным двигателем, то практически неистощимым источником чистой энергии без намёка на углеродный след.
Источник
Бактериальное золото
Человек научился использовать бактерии для извлечения полезных ископаемых из недр земли, в том числе золота. Этот метод, без понимания сути происходящего, люди использовали 2000 лет назад, ещё в Римской империи. Тогда не знали, что это микроорганизмы обеспечивали перевод металлов из сульфидов руды в раствор. И только с середины прошлого века стало известно, что растворы в рудных месторождениях обогащаются металлами, главным образом благодаря бактериям. Процесс перевода металлов в раствор называют бактериальным выщелачиванием. Он происходит в природе везде, где создаются условия для роста и деятельности хемоавтотрофных организмов – сульфидные руды, наличие кислорода воздуха и влага. Бактериальное выщелачивание (биовыщелачивание, БВ) основано на разложении сульфидов специальными бактериями. Эти бактерии питаются энергией, которую они получают в результате окисления сульфидов. После бактериального вскрытия сульфидов золото значительно легче извлекается цианированием. Современные технологии позволяют многократно ускорить те же процессы, которые миллионы лет в присутствии бактерий происходят в естественных условиях.
В 70-80 е годы прошлого столетия в СССР были разработаны основные положения биотехнологии, а в 1974 году была запущена первая в мире опытная установка по биогидрометаллургической переработке упорных золотосодержащих концентратов.
В настоящее время для бактериального выщелачивания используют такие способы как подземное, кучное и чановое выщелачивание. Бактериальное выщелачивание может быть организовано для первичных руд и для концентратов.
Сегодня все российское минеральное золотосодержащее сырьё, с которым мы имеем дело, разделяется на 2 типа: то, что лежит на поверхности, это окисленная часть месторождения (окисленные сульфидные руды), и более глубокая часть этого месторождения – коренные сульфидные руды. Коренные сульфиды на золотых месторождениях представлены арсенопиритом, пиритом, пиротином, халькопиритом и другими минералами, в которых находится золото. А на поверхности месторождения находятся те самые окисленные руды, в образовании которых активное участие принимали бактерии. Это те же руды, которые в течение миллионов лет прошли процесс бактериального окисления. При бактериальном выщелачивании сульфидных мышьяковистых руд, которые встречаются на месторождениях в Якутии и на Камчатке, тионовые бактерии путем окисления разрушают кристаллическую решетку сульфидов и вскрывают пирит или аресенопирит, обеспечивая реагентам доступ к вкраплениям золота. Тионовые бактерии (от греч. theion — сера), это серобактерии, получающие энергию за счёт окисления серы и её восстановленных неорганических соединений (сероводорода, тиосульфата и др.). Кроме того, бактерии при этом поглощают и обезвреживают ядовитые соединения, защищая окружающую среду. При современном промышленном бактериальном выщелачивании обеспечивается высокая степень извлечения золота, около 90%, тогда как без предварительной бактериальной обработки упорных руд выщелачивание золота не превышает 30-50%. В процессе окисления бактерии являются катализаторами, и в природных условиях этот процесс шел бы миллионы лет, в то время как в современных технологических условиях процесс окисления специально интенсифицируется, увеличивается скорость выщелачивания в тысячи и миллионы раз, по сравнению с тем, что происходит в природе.
В настоящее время основной запас российских руд, в том числе и золотосодержащих, находится в коренных месторождениях. В данном случае коренные – это сульфиды. Зона окисления сульфидов обычно не очень велика – десятки и первые сотни метров. Основная же часть запасов находится в более глубоких горизонтах, находящихся на глубине нескольких сотен метров до километра и более. Эти сульфидные руды представляют собой самые большие источники минерального сырья, как для благородных так и для цветных металлов. Поэтому учёные и занялись изучением бактерий применительно к золотым рудам, потому что возникла проблема извлечения золота из этих сульфидных руд. В упорной сульфидной руде золота не видно даже под микроскопом, хотя там может быть 5-10 грамм золота на тонну. Но золото там невидимое, так как находится в микронниках. Размер частиц составляет от десятков до тысячных долей микрона. Микронное золото при измельчении руды, даже до 20-ти микронной крупности, обычным цианированием не извлекается. И к таким упорным труднообогаимым рудам нашли подход с помощью бактерий, которые помогают такое золото извлекать.
Технология заключается в том, что бактерии окисляют сульфиды, и золото высвобождается, переходя в самородную форму. А уже затем это освобождённое золото извлекают с помощью цианирования в сернокислой среде (сами бактерии, окисляя сульфиды, образуют серную кислоту). На разных месторождениях используются различные штаммы бактерий похожие на аборигенных бактерий, которые обитают на этих месторождениях. Выявлено, что наиболее сильной растворяющей способностью обладают бактерии, отобранные на самих золотоносных месторождениях. Их развивают, увеличивают массу и затем используют в сернокислом растворе 2-3 до 5 грамм бактерий на литр. При промышленном извлечении золота в чане используется соотношение 1:4 или 1:5 – одна часть сернокислой жидкости (пульпы) и 4 или 5 частей твердой массы. Автоматически в процессе обеспечивается поступление ингредиентов.
Интересно отметить, что именно в золоторудных месторождениях России были открыты новые группы микроорганизмов, играющих ключевую роль в технологическом процессе, например, бактерии рода Sulfobacillus, включая Sulfobacillus olympiadicus и Sulfobacillus sibiricus.
Уже в недалёком будущем упорные руды станут основными в добыче. Если все запасы золота всех месторождений в России принять за 100% , то первичные (коренные) сульфидные руды в них составляют 64%, а упорных из них около 40%. При оценке положения в будущем не только России, но и всего мира, основное сырьё будет в виде упорных руд. Наша дальнейшая перспектива в будущем (примерно тридцатые годы столетия) – это переработка упорных руд. В настоящее время таких упорных руд в мире добывается 20-25%. В России технология переработки упорных руд началась с 70-х годов прошлого столетия.
Более широкое применение имеет технология чанового бактериального выщелачивания концентратов. Биовыщелачивание этим методом производят в специальных емкостях (чанах). После разложения сульфидов и специальной обработки, извлечение золота из концентрата обычно производят цианированием. Руду сначала перерабатывают на обычной золотоизвлекательной фабрике (ЗИФ): измельчают, обогащают и получают золотосодержащий сульфидный концентрат, с использованием, например, флотации. Бактериальной обработке при чановом выщелачивании подвергается только концентрат. Поддерживать условия для активной жизнедеятельности бактерий в ограниченных емкостях значительно проще, чем на открытых площадках, поэтому чановое бактериальное выщелачивание в настоящее время используют довольно широко в разных странах (ЮАР, Австралия, Китай, Россия, Казахстан, Бразилия и др.)
В отличие от подземного и кучного методов выщелачивания, эффективность которых сильно зависит от внешних факторов окружающей среды, чановое выщелачивание проходит в полностью управляемых условиях.
Четыре цеха «Полюса»
Первая полупромышленная установка по биологическому выщелачиванию была построена именно в России (в СССР) в 1975 г. Технология совершенствовалась, и в настоящее время по этой технологии ведется с 2000 года добыча золота из упорных руд на Олимпиаднинском месторождении в северных условиях Красноярского края. Используется чановый метод биовыщелачивания. В этих условиях на месторождении добывается около 30 тонн золота в год. Технология переработки упорных золотосодержащих руд Олимпиаднинского месторождения по технологии биовыщелачивания находится на самом высоком мировом уровне. На месторождении работают в промышленном режиме 3 установки чанового биовыщелачивания: «Био-1» (пять линий по шесть реакторов емкостью 450 м 3 каждый), «Био-2» (три линии по шесть биореакторов емкостью по 1000 м 3 ), и «Био-3» (одна линия из шести биореакторов емкостью 1000 м 3 каждый). Многоступенчатое биоокисление позволяет извлекать 94-97% золота.
В настоящее время строится цех «Био-4». Его пуск запланирован на конец 2017 года. Особенностью установки является открытое размещение реакторов. Основные физико-химические параметры процесса выведены на мониторы системы управления.
С течением времени добываемые руды становятся беднее. При использовании бедных руд (менее 1г золота на тонну), чановый метод из-за высокой энергоёмкости, требующей очень тонкого помола, становится малорнентабельным, поэтому для бедных руд используется метод кучного биовыщелачивания.
В этом методе используется дроблёная руда (крупность до 1см), где тонкий энергозатратный помол уже не требуется. Его технология заключается в том, что на непроницаемое основание насыпают кучу (штабель). Сверху через систему орошения пропускается тот же биораствор с бактериями.
Кучное биовыщелачивание происходит на природе, на открытом воздухе. Если в чанах процесс выщелачивания проходит за 5 суток, то на кучное биовыщелачивание требуется уже более 100 суток. Но из-за дешевизны процесса это всё-равно рентабельно.
Кроме того, на всех месторождениях за многие годы накопилось миллиарды тонн техногенного сырья (с содержанием золота 1-1,5 г/т), пригодного для кучного биовыщелачивания, которое можно применять на любом месторождении.
Это сырьё нашего будущего. Когда истощаются запасы богатых золотосодержащих руд, кучное биовыщелачивание позволяет вовлекать в переработку бедные и забалансовые руды, руды маломощных месторождений, отходы горнообогатительного производства и др. Это позволяет значительно увеличить сырьевую базу и добычу благородных металлов. В настоящее время метод кучного выщелачивания (КВ) широко используется при золотодобыче в Австралии, США, Канаде, Бразилии, Мексике, Саудовской Аравии, Индонезии, Новой Гвинеи, Чили, Зимбабве, Гане и др. Более 40 % мировой золотодобычи приходится на технологию КВ.
Таким образом, бактериальное биовыщелачивание подходит для концентратов чанового биовыщелачивания, обработки бедных руд, техногегнного сырья на месторождениях.
Источник
Как устроено производство биотоплива, и какие проблемы оно решает
Что такое биотопливо
Биологическое топливо — это горючее растительного или животного происхождения. Предполагается, что оно заменит традиционные виды топлива из исчерпаемых ресурсов на те, которые производятся из возобновляемого сырья.
Например, к биотопливу можно отнести обычные дрова или рапсовое масло. Однако дизель и бензин вытеснили эти виды топлива, так как они дешевле, а массовая автомобилизация требовала больших объемов топлива.
Почему люди вновь вернулись к биотопливу? Первая причина — климатический кризис, который усугубляется выбросами парниковых газов от использования ископаемого топлива. На транспорт приходится практически четверть от всей эмиссии углекислого газа, связанной с производством энергии. С 1970 года объем выбросов парниковых газов в транспортном секторе вырос вдвое, из которых 80% приходится на дорожный транспорт.
Вторая причина — поиск возобновляемых источников энергии, так как запасы нефти и угля вскоре могут полностью закончится. Сюда же можно добавить и скачки цен на углеводороды.
Виды биотоплива
Твердое биотопливо
Самый типичный и древний вид твердого биотоплива — дрова. Однако сейчас в чистом виде и в крупных масштабах их уже почти не используют. Наиболее ходовым твердым видом биотоплива стали пеллеты, получаемые из древесных опилок или коры, соломы, оливковых косточек, ореховой скорлупы или шелухи семечек подсолнечника. Также пеллеты делают из навоза крупного рогатого скота.
Пеллеты заменяют уголь, дрова и солярку. При сгорании они не выделяют вредных веществ и практически не дымят (в отличие от угля и дизеля). Кроме того, они более энергоэффективны, чем обычные дрова. Плюс пеллетов также в минимальном содержании золы, что снижает потребность в обслуживании печей и котлов. Кроме того, они имеют самую низкую цену по сравнению с другими видами биотоплива.
Жидкое биотопливо
Биоэтанол — наиболее популярное и массовое жидкое биотопливо. Его получают путем ферментации крахмала или сахара. Бразилия и США входят в число лидеров по производству биоэтанола. В США биотопливо на основе этанола производят из кукурузы и обычно смешивают с бензином для получения гибридного топлива. В целом в США на биотопливо приходится 5% от всего энергопотребления. В Бразилии биотопливо на основе этанола делают из сахарного тростника, а в Англии даже производят из сахарной свеклы.
Биодизель — второе по популярности жидкое биотопливо. Биодизель делают в основном из масличных растений, таких как соя или масличная пальма, и в меньшей степени из других масляных продуктов, например, отходов кулинарного жира после жарки во фритюре. Биодизель используется в дизельных двигателях и обычно смешивается с нефтяным дизельным топливом в различных пропорциях.
Биобутанол — четырехуглеродный спирт, который также относится к биотопливу. Его делают из того же сырья, что и этанол. Преимущества биобутанола по сравнению с биоэтанолом заключаются в том, что биобутанол не смешивается с водой, имеет более высокое содержание энергии и более низкое давление паров, что означает более низкую летучесть в результате испарения.
Диметиловый эфир. Его можно получить из биомассы, но в промышленных масштабах исходным сырьем для него остается природный газ. Плюс такого топлива в том, что его энергоэффективность практически равна дизельному топливу, однако плотность энергии у диметилового эфира вдвое ниже, чем у дизельного топлива, поэтому для него требуется топливный бак в два раза больше. К тому же для транспортных средств нужна специально разработанная система для работы двигателя на диметиловом эфире.
Сейчас инженеры активно разрабатывают новое поколение жидкого биотоплива, полученного с помощью водорослей. Водоросли выращивают в больших бассейнах или на фермах, они превращают солнечный свет в энергию и хранят ее в виде масла. Масло извлекается механически (при прессовке биомассы) или с помощью химических растворителей, которые разрушают стенки клеток. Дальнейшая переработка и очистка дает биотопливо, подходящее для использования в качестве альтернативы традиционным видам топлива.
Газообразное биотопливо
Биогаз — это газ, состоящий в основном из метана и углекислого газа в различных пропорциях в зависимости от состава органического вещества, из которого он был получен. Основными источниками биогаза являются отходы животноводства и сельского хозяйства, сточные воды и органика из бытовых отходов. Биогаз образуется в результате процессов биологического разложения без доступа кислорода (анаэробное сбраживание).
Биоводород — аналог обычного водорода, который получают из биомассы. Термохимический способ представляет собой нагрев исходного сырья без доступа кислорода до высоких температур, например, древесных отходов, при котором выделяется водород и другие попутные газы. При биохимическом способе получения биоводорода в биомассу добавляют специальные микроорганизмы, которые ее разлагаются с выделением водорода.
Плюсы и минусы биотоплива
Преимущества:
- Возобновляемость ресурса. Ископаемое топливо — это иссякаемый источник энергии, который со временем закончится. Поскольку биотопливо производится из растительных веществ, оно теоретически является возобновляемым.
- Снижение негативного влияния на окружающую среду. При сжигании биотоплива количество углекислого газа снижается до 65%, что сокращает вклад отрасли в изменение климата. Кроме того, биоэтанол и биодизель содержат меньшие концентраций таких химических веществ как хлор и сера. Это означает, что биотопливо помогает снизить выбросы этих загрязнителей в атмосферу.
- Экономическая безопасность. Биотопливо можно производить на месте, создавая рабочие места в том же регионе, где оно будет потребляться, тем самым сокращая транспортные расходы и выбросы. Кроме того, производство собственного биотоплива снижает зависимость страны от поставок нефти из других государств.
- Долговечность двигателя. Поскольку биотопливо содержит меньше примесей в сравнении с традиционными видами топлива, то и двигатели будут загрязняться меньше и реже выходить из строя.
Недостатки:
- Потеря лесов. Производство биотоплива требует огромных территорий под выращивание сырья. Это может привести к массовым вырубкам лесов, чтобы освободить площади.
- Продовольственный кризис. Производство биотоплива может повлиять на экономику, связанную с ценами и доступностью продуктов питания, так как пахотные земли будут отводиться под культуры для биотоплива, а не для пищи.
- Деградация почвы. Выращивание одних и тех же культур (монокультур) приведет к истощению почвы и росту числа вредителей. Для борьбы с ними будут использовать химические пестициды, как следствие — снижение плодородия почвы и потеря биоразнообразия.
- Использование ресурсов. Количество энергии, производимой с помощью биотоплива, значительно меньше, чем от сжигания ископаемого топлива, а это означает, что для удовлетворения энергетических потребностей того же количества людей требуется гораздо больше земли, воды и удобрений.
- Энергетические затраты. При оценке экономических выгод от биотоплива необходимо учитывать энергию, необходимую для его производства. Например, в процессе выращивания кукурузы для этанола используются ископаемые виды топлива при производстве удобрений, транспортировке кукурузы и перегонке этанола. В этом отношении этанол, полученный из кукурузы, дает относительно небольшой выигрыш в энергии.
Где используется биотопливо
Пока речь в основном идет о потреблении его в домашних условиях. Обычно твердые виды биотоплива используют в бедных странах, где нет других источников энергии, для приготовления пищи, стирки и уборки или для обогрева самого дома. 80% всего потребляемого сегодня биотоплива используется как раз для этих целей. 18% биотоплива задействовано в промышленности как источник энергии и смазочных материалов. Биотопливо часто упоминают в качестве альтернативы бензину для автомобилей, но сейчас только 2% используется в транспортной отрасли.
Перспективы биотоплива
На сегодняшний день из развитых стран США являются крупнейшим производителем биотоплива, на них приходится почти 40% мирового рынка. Всего в 2019 году мировое производство биотоплива превысило 1,8 тыс. баррелей, доля на рынке которого составила $136 млрд. Пока это стало рекордом. Из-за пандемии коронавируса мировой рынок биотоплива упал примерно на 8% впервые за 20 лет.
У биотоплива есть шанс занять только часть рынка, поскольку его потенциал ограничивают искусственно. Так, в ЕС действуют правила, запрещающие использовать более 7% продовольственных культур в качестве сырья для биотоплива. В краткосрочной перспективе биотопливо не требует замены существующей инфраструктуры и двигателей, но маловероятно, что весь энергетический комплекс сможет перейти исключительно на него.
Источник