- Функция. Способы задания функций.
- Основные элементарные функции: их свойства и графики
- Постоянная функция
- Корень n-й степени
- Степенная функция
- Степенная функция при нечетном положительном показателе
- Степенная функция при четном положительном показателе
- Степенная функция при нечетном отрицательном показателе
- Степенная функция при четном отрицательном показателе степени
- Степенная функция при рациональном или иррациональном показателе (значение больше нуля и меньше единицы)
- Степенная функция при нецелом рациональном или иррациональном показателе степени (больше единицы)
- Степенная функция при действительном показателе степени (больше минус единицы и меньше нуля)
- Степенная функция при нецелом действительном показателе степени (меньше минус единицы)
- Показательная функция
- Логарифмическая функция
- Тригонометрические функции, их свойства и графики
- Обратные тригонометрические функции, их свойства и графики
Функция. Способы задания функций.
Функция является заданной, иначе говоря, известной, если для каждого значения возможного числа аргументов можно узнать соответствующее значение функции. Наиболее распространенные три способа задания функции: табличный, графический, аналитический, существуют еще словесный и рекурсивный способы.
1. Табличный способ наиболее широко распространен (таблицы логарифмов, квадратных корней), основное его достоинство – возможность получения числового значения функции, недостатки заключаются в том, что таблица может быть трудно читаема и иногда не содержит промежуточных значений аргумента.
Аргумент х принимает заданные в таблице значения, а у определяется соответственно этому аргументу х.
2. Графический способ заключается в проведении линии (графика), у которой абсциссы изображают значения аргумента, а ординаты – соответствующие значения функции. Часто для наглядности масштабы на осях принимают разными.
Например: для нахождения по графику у, которому соответствует х = 2,5 необходимо провести перпендикуляр к оси х на отметке 2,5. Отметку можно довольно точно сделать с помощью линейки. Тогда найдем, что при х = 2,5 у равно 7,5, однако если нам необходимо найти значение у при х равном 2,76, то графический способ задания функции не будет достаточно точным, т.к. линейка не дает возможности для столь точного замера.
Достоинства этого способа задания функций заключаются в легкости и целостности восприятия, в непрерывности изменения аргумента; недостатком является уменьшение степени точности и сложность получения точных значений.
3. Аналитический способ состоит в задании функции одной или несколькими формулами. Основным достоинством этого способа является высокая точность определения функции от интересующего аргумента, а недостатком является затрата времени на проведение дополнительных математических операций.
Функцию можно задать с помощью математической формулы y=x 2 , тогда если х равно 2, то у равно 4, возводим х в квадрат.
4. Словесный способ состоит в задании функции обычным языком, т.е. словами. При этом необходимо дать входные, выходные значения и соответствие между ними.
Словесно можно задать функцию (задачу), принимающуюся в виде натурального аргумента х с соответствующим значением суммы цифр, из которых состоит значение у. Поясняем: если х равно 4, то у равно 4, а если х равно 358, то у равен сумме 3 + 5 + 8, т. е 16. Далее аналогично.
5. Рекурсивный способ состоит в задании функции через саму себя, при этом значения функции определяются через другие ее же значения. Такой способ задания функции используется в задании множеств и рядов.
При разложении числа Эйлера задается функцией:
Ее сокращение приведено ниже:
При прямом расчёте возникает бесконечная рекурсия, но можно доказать, что значение f(n) при возрастании n стремится к единице (поэтому, несмотря на бесконечность ряда, значение числа Эйлера конечно). Для приближённого вычисления значения e достаточно искусственно ограничить глубину рекурсии некоторым наперёд заданным числом и по достижении его использовать вместо f(n) единицу.
Источник
Основные элементарные функции: их свойства и графики
Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.
Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.
Выделяют следующие виды основных элементарных функций:
- постоянная функция (константа);
- корень n -ой степени;
- степенная функция;
- показательная функция;
- логарифмическая функция;
- тригонометрические функции;
- братные тригонометрические функции.
Постоянная функция
Постоянная функция определяется формулой: y = C ( C – некое действительное число) и имеет также название: константа. Данная функция определяет соответствие любому действительному значению независимой переменной x одного и того же значения переменной y – значение C .
График константы – это прямая, которая параллельна оси абсцисс и проходит через точку, имеющую координаты ( 0 , С ) . Для наглядности приведем графики постоянных функций y = 5 , y = — 2 , y = 3 , y = 3 (на чертеже обозначено черным, красным и синим цветами соответственно).
Свойства постоянных функций:
- область определения – все множество действительных чисел;
- постоянная функция – четная;
- область значений – множество, составленное из единственного числа C ;
- постоянная функция является невозрастающей и неубывающей;
- постоянная функция – прямая линия, о выпуклости или вогнутости здесь речи быть не может;
- асимптоты отсутствуют;
- точка прохождения функции на координатной плоскости – ( 0 ; С ) .
Корень n-й степени
Данная элементарная функция определяется формулой y = x n ( n – натуральное число больше единицы).
Рассмотрим две вариации функции.
- Корень n -й степени, n – четное число
Для наглядности укажем чертеж , на котором изображены графики таких функций: y = x , y = x 4 и y = x 8 . Эти функции отмечены цветом: черный, красный и синий соответственно.
Похожий вид у графиков функции четной степени при иных значениях показателя.
Свойства функции корень n-ой степени, n – четное число
- область определения – множество всех неотрицательных действительных чисел [ 0 , + ∞ ) ;
- когда x = 0 , функция y = x n имеет значение, равное нулю;
- данная функция- функция общего вида (не является ни четной, ни нечетной);
- область значений: [ 0 , + ∞ ) ;
- данная функция y = x n при четных показателях корня возрастает на всей области определения;
- функция обладает выпуклостью с направлением вверх на всей области определения;
- отсутствуют точки перегиба;
- асимптоты отсутствуют;
- график функции при четных n проходит через точки ( 0 ; 0 ) и ( 1 ; 1 ) .
- Корень n -й степени, n – нечетное число
Такая функция определена на всем множестве действительных чисел. Для наглядности рассмотрим графики функций y = x 3 , y = x 5 и x 9 . На чертеже они обозначены цветами: черный, красный и синий цвета кривых соответственно.
Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.
Свойства функции корень n-ой степени, n – нечетное число
- область определения – множество всех действительных чисел;
- данная функция – нечетная;
- область значений – множество всех действительных чисел;
- функция y = x n при нечетных показателях корня возрастает на всей области определения;
- функция имеет вогнутость на промежутке ( — ∞ ; 0 ] и выпуклость на промежутке [ 0 , + ∞ ) ;
- точка перегиба имеет координаты ( 0 ; 0 ) ;
- асимптоты отсутствуют;
- график функции при нечетных n проходит через точки ( — 1 ; — 1 ) , ( 0 ; 0 ) и ( 1 ; 1 ) .
Степенная функция
Степенная функция определяется формулой y = x a .
Вид графиков и свойства функции зависят от значения показателя степени.
- когда степенная функция имеет целый показатель a , то вид графика степенной функции и ее свойства зависят от того, четный или нечетный показатель степени, а также того, какой знак имеет показатель степени. Рассмотрим все эти частные случаи подробнее ниже;
- показатель степени может быть дробным или иррациональным – в зависимости от этого также варьируется вид графиков и свойства функции. Мы разберем частные случаи, задав несколько условий: 0 a 1 ; a > 1 ; — 1 a 0 и a — 1 ;
- степенная функция может иметь нулевой показатель, этот случай также ниже разберем подробнее.
Степенная функция при нечетном положительном показателе
Разберем степенную функцию y = x a , когда a – нечетное положительное число, например, a = 1 , 3 , 5 …
Для наглядности укажем графики таких степенных функций: y = x (черный цвет графика), y = x 3 (синий цвет графика), y = x 5 (красный цвет графика), y = x 7 (зеленый цвет графика). Когда a = 1 , получаем линейную функцию y = x .
Свойства степенной функции, когда показатель степени – нечетный положительный
- область определения: x ∈ — ∞ ; + ∞ ;
- область значений: y ∈ — ∞ ; + ∞ ;
- функция является нечетной, поскольку y ( — x ) = — y ( x ) ;
- функция является возрастающей при x ∈ ( — ∞ ; + ∞ ) ;
- функция имеет выпуклость при x ∈ ( — ∞ ; 0 ] и вогнутость при x ∈ [ 0 ; + ∞ ) (исключая линейную функцию);
- точка перегиба имеет координаты ( 0 ; 0 ) (исключая линейную функцию);
- асимптоты отсутствуют;
- точки прохождения функции: ( — 1 ; — 1 ) , ( 0 ; 0 ) , ( 1 ; 1 ) .
Степенная функция при четном положительном показателе
Разберем степенную функцию y = x a , когда a – четное положительное число, например, a = 2 , 4 , 6 …
Для наглядности укажем графики таких степенных функций: y = x 2 (черный цвет графика), y = x 4 (синий цвет графика), y = x 8 (красный цвет графика). Когда a = 2 , получаем квадратичную функцию, график которой – квадратичная парабола.
Свойства степенной функции, когда показатель степени – четный положительный:
- область определения: x ∈ ( — ∞ ; + ∞ ) ;
- область значений: y ∈ [ 0 ; + ∞ ) ;
- функция является четной, поскольку y ( — x ) = y ( x ) ;
- функция является возрастающей при x ∈ [ 0 ; + ∞ ) ; убывающей при x ∈ ( — ∞ ; 0 ] ;
- функция имеет вогнутость при x ∈ ( — ∞ ; + ∞ ) ;
- очки перегиба отсутствуют;
- асимптоты отсутствуют;
- точки прохождения функции: ( — 1 ; 1 ) , ( 0 ; 0 ) , ( 1 ; 1 ) .
Степенная функция при нечетном отрицательном показателе
На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – нечетное отрицательное число: y = x — 9 (черный цвет графика); y = x — 5 (синий цвет графика); y = x — 3 (красный цвет графика); y = x — 1 (зеленый цвет графика). Когда a = — 1 , получаем обратную пропорциональность, график которой – гипербола.
Свойства степенной функции, когда показатель степени – нечетный отрицательный:
- область определения: x ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) ;
Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 — 0 x a = — ∞ , lim x → 0 + 0 x a = + ∞ при a = — 1 , — 3 , — 5 , … . Таким образом, прямая х = 0 – вертикальная асимптота;
- область значений: y ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) ;
- функция является нечетной, поскольку y ( — x ) = — y ( x ) ;
- функция является убывающей при x ∈ — ∞ ; 0 ∪ ( 0 ; + ∞ ) ;
- функция имеет выпуклость при x ∈ ( — ∞ ; 0 ) и вогнутость при x ∈ ( 0 ; + ∞ ) ;
- точки перегиба отсутствуют;
- горизонтальная асимптота – прямая y = 0 , поскольку:
k = lim x → ∞ x a x = 0 , b = lim x → ∞ ( x a — k x ) = 0 ⇒ y = k x + b = 0 , когда а = — 1 , — 3 , — 5 , . . . .
- точки прохождения функции: ( — 1 ; — 1 ) , ( 1 ; 1 ) .
Степенная функция при четном отрицательном показателе степени
На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – четное отрицательное число: y = x — 8 (черный цвет графика); y = x — 4 (синий цвет графика); y = x — 2 (красный цвет графика).
Свойства степенной функции, когда показатель степени – четный отрицательный:
- область определения: x ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) ;
Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 — 0 x a = + ∞ , lim x → 0 + 0 x a = + ∞ при a = — 2 , — 4 , — 6 , … . Таким образом, прямая х = 0 – вертикальная асимптота;
- область значений: y ∈ ( 0 ; + ∞ ) ;
- функция является четной, поскольку y ( — x ) = y ( x ) ;
- функция является возрастающей при x ∈ ( — ∞ ; 0 ) и убывающей при x ∈ 0 ; + ∞ ;
- функция имеет вогнутость при x ∈ ( — ∞ ; 0 ) ∪ ( 0 ; + ∞ ) ;
- точки перегиба отсутствуют;
- горизонтальная асимптота – прямая y = 0 , поскольку:
k = lim x → ∞ x a x = 0 , b = lim x → ∞ ( x a — k x ) = 0 ⇒ y = k x + b = 0 , когда a = — 2 , — 4 , — 6 , . . . .
- точки прохождения функции: ( — 1 ; 1 ) , ( 1 ; 1 ) .
Степенная функция при рациональном или иррациональном показателе (значение больше нуля и меньше единицы)
С самого начала обратите внимание на следующий аспект: в случае, когда a – положительная дробь с нечетным знаменателем, некоторые авторы принимают за область определения этой степенной функции интервал — ∞ ; + ∞ , оговаривая при этом, что показатель a – несократимая дробь. На данный момент авторы многих учебных изданий по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции, где показатель – дробь с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придержемся именно такой позиции: возьмем за область определения степенных функций с дробными положительными показателями степени множество [ 0 ; + ∞ ) . Рекомендация для учащихся: выяснить взгляд преподавателя на этот момент во избежание разногласий.
Итак, разберем степенную функцию y = x a , когда показатель степени – рациональное или иррациональное число при условии, что 0 a 1 .
Проиллюстрируем графиками степенные функции y = x a , когда a = 11 12 (черный цвет графика); a = 5 7 (красный цвет графика); a = 1 3 (синий цвет графика); a = 2 5 (зеленый цвет графика).
Иные значения показателя степени a (при условии 0 a 1 ) дадут аналогичный вид графика.
Свойства степенной функции при 0 a 1 :
- область определения: x ∈ [ 0 ; + ∞ ) ;
- область значений: y ∈ [ 0 ; + ∞ ) ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- функция является возрастающей при x ∈ [ 0 ; + ∞ ) ;
- функция имеет выпуклость при x ∈ ( 0 ; + ∞ ) ;
- точки перегиба отсутствуют;
- асимптоты отсутствуют;
- точки прохождения функции: ( 0 ; 0 ) , ( 1 ; 1 ) .
Степенная функция при нецелом рациональном или иррациональном показателе степени (больше единицы)
Разберем степенную функцию y = x a , когда показатель степени – нецелое рациональное или иррациональное число при условии, что a > 1 .
Проиллюстрируем графиками степенную функцию y = x a в заданных условиях на примере таких функций: y = x 5 4 , y = x 4 3 , y = x 7 3 , y = x 3 π (черный, красный, синий, зеленый цвет графиков соответственно).
Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.
Свойства степенной функции при a > 1 :
- область определения: x ∈ [ 0 ; + ∞ ) ;
- область значений: y ∈ [ 0 ; + ∞ ) ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- функция является возрастающей при x ∈ [ 0 ; + ∞ ) ;
- функция имеет вогнутость при x ∈ ( 0 ; + ∞ ) (когда 1 a 2 ) и выпуклость при x ∈ [ 0 ; + ∞ ) (когда a > 2 );
- точки перегиба отсутствуют;
- асимптоты отсутствуют;
- точки прохождения функции: ( 0 ; 0 ) , ( 1 ; 1 ) .
Степенная функция при действительном показателе степени (больше минус единицы и меньше нуля)
Обращаем ваше внимание! Когда a – отрицательная дробь с нечетным знаменателем, в работах некоторых авторов встречается взгляд, что область определения в данном случае – интервал — ∞ ; 0 ∪ ( 0 ; + ∞ ) с оговоркой, что показатель степени a – несократимая дробь. На данный момент авторы учебных материалов по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придерживаемся именно такого взгляда: возьмем за область определения степенных функций с дробными отрицательными показателями множество ( 0 ; + ∞ ) . Рекомендация для учащихся: уточните видение вашего преподавателя на этот момент во избежание разногласий.
Продолжаем тему и разбираем степенную функцию y = x a при условии: — 1 a 0 .
Приведем чертеж графиков следующий функций: y = x — 5 6 , y = x — 2 3 , y = x — 1 2 2 , y = x — 1 7 (черный, красный, синий, зеленый цвет линий соответственно).
Свойства степенной функции при — 1 a 0 :
lim x → 0 + 0 x a = + ∞ , когда — 1 a 0 , т.е. х = 0 – вертикальная асимптота;
- область значений: y ∈ 0 ; + ∞ ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- функция является убывающей при x ∈ 0 ; + ∞ ;
- функция имеет вогнутость при x ∈ 0 ; + ∞ ;
- точки перегиба отсутствуют;
- горизонтальная асимптота – прямая y = 0 ;
- точка прохождения функции: ( 1 ; 1 ) .
Степенная функция при нецелом действительном показателе степени (меньше минус единицы)
На чертеже ниже приведены графики степенных функций y = x — 5 4 , y = x — 5 3 , y = x — 6 , y = x — 24 7 (черный, красный, синий, зеленый цвета кривых соответственно).
Свойства степенной функции при a — 1 :
lim x → 0 + 0 x a = + ∞ , когда a — 1 , т.е. х = 0 – вертикальная асимптота;
- область значений: y ∈ ( 0 ; + ∞ ) ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- функция является убывающей при x ∈ 0 ; + ∞ ;
- функция имеет вогнутость при x ∈ 0 ; + ∞ ;
- точки перегиба отсутствуют;
- горизонтальная асимптота – прямая y = 0 ;
- точка прохождения функции: ( 1 ; 1 ) .
Когда a = 0 и х ≠ 0 , получим функцию y = x 0 = 1 , определяющую прямую, из которой исключена точка ( 0 ; 1 ) (условились, что выражению 0 0 не будет придаваться никакого значения).
Показательная функция
Показательная функция имеет вид y = a x , где а > 0 и а ≠ 1 , и график этой функции выглядит различно, исходя из значения основания a . Рассмотрим частные случаи.
Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы ( 0 a 1 ) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).
Подобный же вид будут иметь графики показательной функции при иных значениях основания при условии 0 a 1 .
Свойства показательной функции, когда основание меньше единицы:
- область определения – все множество действительных чисел;
- область значений: y ∈ ( 0 ; + ∞ ) ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- показательная функция, у которой основание меньше единицы, является убывающей на всей области определения;
- функция имеет вогнутость при x ∈ — ∞ ; + ∞ ;
- точки перегиба отсутствуют;
- горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к + ∞ ;
- точка прохождения функции: ( 0 ; 1 ) .
Теперь рассмотрим случай, когда основание показательной функции больше, чем единица ( а > 1 ) .
Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).
Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.
Свойства показательной функции, когда основание больше единицы:
- область определения – все множество действительных чисел;
- область значений: y ∈ ( 0 ; + ∞ ) ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- показательная функция, у которой основание больше единицы, является возрастающей при x ∈ — ∞ ; + ∞ ;
- функция имеет вогнутость при x ∈ — ∞ ; + ∞ ;
- точки перегиба отсутствуют;
- горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к — ∞ ;
- точка прохождения функции: ( 0 ; 1 ) .
Логарифмическая функция
Логарифмическая функция имеет вид y = log a ( x ) , где a > 0 , a ≠ 1 .
Такая функция определена только при положительных значениях аргумента: при x ∈ 0 ; + ∞ .
График логарифмической функции имеет различный вид, исходя из значения основания а.
Рассмотрим сначала ситуацию, когда 0 a 1 . Продемонстрируем этот частный случай графиком логарифмической функции при a = 1 2 (синий цвет кривой) и а = 5 6 (красный цвет кривой).
Иные значения основания, не большие единицы, дадут аналогичный вид графика.
Свойства логарифмической функции, когда основание меньше единицы:
- область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к + ∞ ;
- область значений: y ∈ — ∞ ; + ∞ ;
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- логарифмическая функция является убывающей на всей области определения;
- функция имеет вогнутость при x ∈ 0 ; + ∞ ;
- точки перегиба отсутствуют;
- асимптоты отсутствуют;
- точка прохождения функции: ( 1 ; 0 ) .
Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже – графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).
Иные значения основания больше единицы дадут аналогичный вид графика.
Свойства логарифмической функции, когда основание больше единицы:
- область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к — ∞ ;
- область значений: y ∈ — ∞ ; + ∞ (все множество действительных чисел);
- данная функция – функция общего вида (не является ни нечетной, ни четной);
- логарифмическая функция является возрастающей при x ∈ 0 ; + ∞ ;
- функция имеет выпуклость при x ∈ 0 ; + ∞ ;
- точки перегиба отсутствуют;
- асимптоты отсутствуют;
- точка прохождения функции: ( 1 ; 0 ) .
Тригонометрические функции, их свойства и графики
Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.
В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f ( x + T ) = f ( x ) ( T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.
- Функция синус: y = sin ( х )
График данной функции называется синусоида.
Свойства функции синус:
- область определения: все множество действительных чисел x ∈ — ∞ ; + ∞ ;
- наименьший положительный период: Т = 2 π ;
- функция обращается в нуль, когда x = π · k , где k ∈ Z ( Z – множество целых чисел);
- область значений: y ∈ — 1 ; 1 ;
- данная функция – нечетная, поскольку y ( — x ) = — y ( x ) ;
- функция является возрастающей при x ∈ — π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z и убывающей при x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z ;
- функция синус имеет локальные максимумы в точках π 2 + 2 π · k ; 1 и локальные минимумы в точках — π 2 + 2 π · k ; — 1 , k ∈ Z ;
- функция синус вогнутая, когда x ∈ — π + 2 π · k ; 2 π · k , k ∈ Z и выпуклая, когда x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
- точки перегиба имеют координаты π · k ; 0 , k ∈ Z ;
- асимптоты отсутствуют.
График данной функции называется косинусоида.
Свойства функции косинус:
- область определения: x ∈ — ∞ ; + ∞ ;
- наименьший положительный период: Т = 2 π ;
- функция обращается в нуль, когда x = π 2 + π · k при k ∈ Z ( Z – множество целых чисел);
- область значений: y ∈ — 1 ; 1 ;
- данная функция – четная, поскольку y ( — x ) = y ( x ) ;
- функция является возрастающей при x ∈ — π + 2 π · k ; 2 π · k , k ∈ Z и убывающей при x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
- функция косинус имеет локальные максимумы в точках 2 π · k ; 1 , k ∈ Z и локальные минимумы в точках π + 2 π · k ; — 1 , k ∈ z ;
- функция косинус вогнутая, когда x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z и выпуклая, когда x ∈ — π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z ;
- точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z
- асимптоты отсутствуют.
График данной функции называется тангенсоида.
Свойства функции тангенс:
- область определения: x ∈ — π 2 + π · k ; π 2 + π · k , где k ∈ Z ( Z – множество целых чисел);
- Поведение функции тангенс на границе области определения lim x → π 2 + π · k + 0 t g ( x ) = — ∞ , lim x → π 2 + π · k — 0 t g ( x ) = + ∞ . Таким образом, прямые x = π 2 + π · k k ∈ Z – вертикальные асимптоты;
- наименьший положительный период: Т = π ;
- функция обращается в нуль, когда x = π · k при k ∈ Z ( Z – множество целых чисел);
- область значений: y ∈ — ∞ ; + ∞ ;
- данная функция – нечетная, поскольку y ( — x ) = — y ( x ) ;
- функция является возрастающей при — π 2 + π · k ; π 2 + π · k , k ∈ Z ;
- функция тангенс является вогнутой при x ∈ [ π · k ; π 2 + π · k ) , k ∈ Z и выпуклой при x ∈ ( — π 2 + π · k ; π · k ] , k ∈ Z ;
- точки перегиба имеют координаты π · k ; 0 , k ∈ Z ;
- наклонные и горизонтальные асимптоты отсутствуют.
График данной функции называется котангенсоида.
Свойства функции котангенс:
- область определения: x ∈ ( π · k ; π + π · k ) , где k ∈ Z ( Z – множество целых чисел);
Поведение функции котангенс на границе области определения lim x → π · k + 0 t g ( x ) = + ∞ , lim x → π · k — 0 t g ( x ) = — ∞ . Таким образом, прямые x = π · k k ∈ Z – вертикальные асимптоты;
- наименьший положительный период: Т = π ;
- функция обращается в нуль, когда x = π 2 + π · k при k ∈ Z ( Z – множество целых чисел);
- область значений: y ∈ — ∞ ; + ∞ ;
- данная функция – нечетная, поскольку y ( — x ) = — y ( x ) ;
- функция является убывающей при x ∈ π · k ; π + π · k , k ∈ Z ;
- функция котангенс является вогнутой при x ∈ ( π · k ; π 2 + π · k ] , k ∈ Z и выпуклой при x ∈ [ — π 2 + π · k ; π · k ) , k ∈ Z ;
- точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z ;
- наклонные и горизонтальные асимптоты отсутствуют.
Обратные тригонометрические функции, их свойства и графики
Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.
- Функция арксинус: y = a r c sin ( х )
Свойства функции арксинус:
- область определения: x ∈ — 1 ; 1 ;
- область значений: y ∈ — π 2 ; π 2 ;
- данная функция – нечетная, поскольку y ( — x ) = — y ( x ) ;
- функция является возрастающей на всей области определения;
- функция арксинус имеет вогнутость при x ∈ 0 ; 1 и выпуклость при x ∈ — 1 ; 0 ;
- точки перегиба имеют координаты ( 0 ; 0 ) , она же – нуль функции;
- асимптоты отсутствуют.
- Функция арккосинус: y = a r c cos ( х )
Свойства функции арккосинус:
- область определения: x ∈ — 1 ; 1 ;
- область значений: y ∈ 0 ; π ;
- данная функция — общего вида (ни четная, ни нечетная);
- функция является убывающей на всей области определения;
- функция арккосинус имеет вогнутость при x ∈ — 1 ; 0 и выпуклость при x ∈ 0 ; 1 ;
- точки перегиба имеют координаты 0 ; π 2 ;
- асимптоты отсутствуют.
- Функция арктангенс: y = a r c t g ( х )
Свойства функции арктангенс:
- область определения: x ∈ — ∞ ; + ∞ ;
- область значений: y ∈ — π 2 ; π 2 ;
- данная функция – нечетная, поскольку y ( — x ) = — y ( x ) ;
- функция является возрастающей на всей области определения;
- функция арктангенс имеет вогнутость при x ∈ ( — ∞ ; 0 ] и выпуклость при x ∈ [ 0 ; + ∞ ) ;
- точка перегиба имеет координаты ( 0 ; 0 ) , она же – нуль функции;
- горизонтальные асимптоты – прямые y = — π 2 при x → — ∞ и y = π 2 при x → + ∞ (на рисунке асимптоты – это линии зеленого цвета).
- Функция арккотангенс: y = a r c c t g ( х )
Свойства функции арккотангенс:
- область определения: x ∈ — ∞ ; + ∞ ;
- область значений: y ∈ ( 0 ; π ) ;
- данная функция – общего вида;
- функция является убывающей на всей области определения;
- функция арккотангенс имеет вогнутость при x ∈ [ 0 ; + ∞ ) и выпуклость при x ∈ ( — ∞ ; 0 ] ;
- точка перегиба имеет координаты 0 ; π 2 ;
- горизонтальные асимптоты – прямые y = π при x → — ∞ (на чертеже – линия зеленого цвета) и y = 0 при x → + ∞ .
Источник