Модель OSI
Физический уровень
Физический уровень ( Physical layer ) имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель , витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных , такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов , передающих дискретную информацию, такую как крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования , скорость передачи сигналов. Кроме того, здесь стандартизируются типы разъемов и назначение каждого контакта.
- передача битов по физическим каналам ;
- формирование электрических сигналов ;
- кодирование информации;
- синхронизация ;
- модуляция .
Функции физического уровня реализуются во всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом .
Примером протокола физического уровня может служить спецификация 10Base -T технологии Ethernet, которая определяет в качестве используемого кабеля неэкранированную витую пару категории 3 с волновым сопротивлением 100 Ом, разъем RJ-45 , максимальную длину физического сегмента 100 метров, манчестерский код для представления данных в кабеле, а также некоторые другие характеристики среды и электрических сигналов .
Канальный уровень
На физическом уровне просто пересылаются биты . При этом не учитывается, что в тех сетях, в которых линии связи используются (разделяются) попеременно несколькими парами взаимодействующих компьютеров, физическая среда передачи может быть занята. Поэтому одной из задач канального уровня ( Data Link layer ) является проверка доступности среды передачи . Другая задача канального уровня — реализация механизмов обнаружения и коррекции ошибок . Для этого на канальном уровне — биты группируются в наборы, называемые кадрами ( frames ). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра , для его выделения, а также вычисляет контрольную сумму , обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру . Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра . Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров. Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay .
Функции канального уровня
Надежная доставка пакета :
- Между двумя соседними станциями в сети с произвольной топологией.
- Между любыми станциями в сети с типовой топологией:
- проверка доступности разделяемой среды ;
- выделение кадров из потока данных, поступающих по сети; формирование кадров при отправке данных ;
- подсчет и проверка контрольной суммы .
В протоколах канального уровня , используемых в локальных сетях, заложена определенная структура связей между компьютерами и способы их адресации . Хотя канальный уровень и обеспечивает доставку кадра между любыми двумя узлами локальной сети, он это делает только в сети с определенной топологией связей , именно той топологией, для которой он был разработан. К таким типовым топологиям, поддерживаемым протоколами канального уровня локальных сетей, относятся » общая шина «, «кольцо» и «звезда», а также структуры, полученные из них с помощью мостов и коммутаторов . Примерами протоколов канального уровня являются протоколы Ethernet, Token Ring , FDDI , 100VG-AnyLAN .
В локальных сетях протоколы канального уровня используются компьютерами, мостами , коммутаторами и маршрутизаторами . В компьютерах функции канального уровня реализуются совместными усилиями сетевых адаптеров и их драйверов .
В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень часто обеспечивает обмен сообщениями только между двумя соседними компьютерами, соединенными индивидуальной линией связи. Примерами протоколов «точка-точка» (как часто называют такие протоколы) могут служить широко распространенные протоколы PPP и LAP -B. В таких случаях для доставки сообщений между конечными узлами через всю сеть используются средства сетевого уровня . Именно так организованы сети X.25. Иногда в глобальных сетях функции канального уровня в чистом виде выделить трудно, так как в одном и том же протоколе они объединяются с функциями сетевого уровня . Примерами такого подхода могут служить протоколы технологий ATM и frame relay .
В целом канальный уровень представляет собой весьма мощный набор функций по пересылке сообщений между узлами сети. В некоторых случаях протоколы канального уровня оказываются самодостаточными транспортными средствами, и тогда поверх них могут работать непосредственно протоколы прикладного уровня или приложения, без привлечения средств сетевого и транспортного уровней. Например, существует реализация протокола управления сетью SNMP непосредственно поверх Ethernet, хотя стандартно этот протокол работает поверх сетевого протокола IP и транспортного протокола UDP . Естественно, что применение такой реализации будет ограниченным — она не подходит для составных сетей разных технологий, например Ethernet и X.25, и даже для такой сети, в которой во всех сегментах применяется Ethernet, но между сегментами существуют петлевидные связи. А вот в двухсегментной сети Ethernet, объединенной мостом , реализация SNMP над канальным уровнем будет вполне работоспособна.
Тем не менее, для обеспечения качественной транспортировки сообщений в сетях любых топологий и технологий функций канального уровня оказывается недостаточно, поэтому в модели OSI решение этой задачи возлагается на два следующих уровня — сетевой и транспортный.
Канальный уровень обеспечивает передачу пакетов данных, поступающих от протоколов верхних уровней, узлу назначения, адрес которого также указывает протокол верхнего уровня. Протоколы канального уровня оформляют переданные им пакеты в кадры собственного формата, помещая указанный адрес назначения в одно из полей такого кадра , а также сопровождая кадр контрольной суммой . Протокол канального уровня имеет локальный смысл, он предназначен для доставки кадров данных, как правило, в пределах сетей с простой топологией связей и однотипной или близкой технологией, например в односегментных сетях Ethernet или же в многосегментных сетях Ethernet и Token Ring иерархической топологии, разделенных только мостами и коммутаторами . Во всех этих конфигурациях адрес назначения имеет локальный смысл для данной сети и не изменяется при прохождении кадра от узла-источника к узлу назначения. Возможность передавать данные между локальными сетями разных технологий связана с тем, что в этих технологиях используются адреса одинакового формата, к тому же производители сетевых адаптеров обеспечивают уникальность адресов независимо от технологии.
Другой областью действия протоколов канального уровня являются связи типа «точка-точка» глобальных сетей, когда протокол канального уровня ответственен за доставку кадра непосредственному соседу. Адрес в этом случае не имеет принципиального значения, а на первый план выходит способность протокола восстанавливать искаженные и утерянные кадры, так как плохое качество территориальных каналов, особенно коммутируемых телефонных, часто требует выполнения подобных действий. Если же перечисленные выше условия не соблюдаются, например связи между сегментами Ethernet имеют петлевидную структуру, либо объединяемые сети используют различные способы адресации , как в сетях Ethernet и X.25, то протокол канального уровня не может в одиночку справиться с задачей передачи кадра между узлами и требует помощи протокола сетевого уровня .
Источник
Сетевые стандарты: семиуровневая эталонная модель OSI
Модель взаимодействия открытых систем (Open System Interconnection, OSI) определяет различные уровни взаимодействия систем в сетях с коммутацией пакетов, дает им стандартные имена и указывает, какие функции должен выполнять каждый уровень.
Модель OSI была разработана на основании большого опыта, полученного при создании компьютерных сетей, в основном глобальных, в 70-е годы. Полное описание этой модели занимает более 1000 страниц текста.
В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представительный, сеансовый, транспортный, сетевой, канальный и физический . Каждый уровень имеет дело с определенным аспектом взаимодействия сетевых устройств.
Contents
Физический уровень [ ]
Физический уровень (Physical layer) имеет дело с передачей битов по физическим каналам связи, таким, как коаксиальный кабель, витая пара, оптоволоконный кабель или цифровой территориальный канал. К этому уровню имеют отношение характеристики физических сред передачи данных, такие как полоса пропускания, помехозащищенность, волновое сопротивление и другие. На этом же уровне определяются характеристики электрических сигналов, передающих дискретную информацию, такую как крутизна фронтов импульсов, уровни напряжения или тока передаваемого сигнала, тип кодирования, скорость передачи сигналов. Кроме того, здесь стандартизируются типы разъемов и назначение каждого контакта. Реализуется аппаратно.
Протоколы физического уровня OSI:
- USB, Firewire
- IEEE 802.15 (Bluetooth), IRDA
- EIA RS-232, EIA-422, EIA-423, RS-449, RS-485
- Ethernet (включая 10BASE-T, 10BASE2, 10BASE5, 100BASE-TX, 100BASE-FX, 100BASE-T, 1000BASE-T, 1000BASE-SX и другие)
- DSL, ISDN
- SONET/SDH
- 802.11 Wi-Fi
- Etherloop
- GSM Um radio interface
- ITU и ITU-T
- TransferJet
- ARINC 818
- G.hn/G.9960
Канальный уровень [ ]
Канальный уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Другая задача канального уровня — реализация механизмов обнаружения и коррекции ошибок. Для этого на канальном уровне биты группируются в наборы, называемые кадрами (frames). Канальный уровень обеспечивает корректность передачи каждого кадра помещая специальную последовательность бит в начало и конец каждого кадра, для его выделения, а также вычисляет контрольную сумму, обрабатывая все байты кадра определенным способом, и добавляет контрольную сумму к кадру. Когда кадр приходит по сети, получатель снова вычисляет контрольную сумму полученных данных и сравнивает результат с контрольной суммой из кадра. Если они совпадают, кадр считается правильным и принимается. Если же контрольные суммы не совпадают, то фиксируется ошибка. Канальный уровень может не только обнаруживать ошибки, но и исправлять их за счет повторной передачи поврежденных кадров . Необходимо отметить, что функция исправления ошибок для канального уровня не является обязательной, поэтому в некоторых протоколах этого уровня она отсутствует, например в Ethernet и frame relay. Реализуются программно-аппаратно.
Спецификация IEEE 802 разделяет этот уровень на два подуровня — MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.
На этом уровне работают коммутаторы, мосты.
Протоколы канального уровня:
- ARCnet
- ATM
- Cisco Discovery Protocol (CDP)
- Controller Area Network (CAN)
- Econet
- Ethernet, Ethernet Automatic Protection Switching (EAPS), Fiber Distributed Data Interface (FDDI), Frame Relay
- High-Level Data Link Control (HDLC), IEEE 802.2 (provides LLC functions to IEEE 802 MAC layers), Link Access Procedures, D channel (LAPD)
- IEEE 802.11 wireless LAN
- LocalTalk
- Multiprotocol Label Switching (MPLS)
- Point-to-Point Protocol (PPP)
- Serial Line Internet Protocol (SLIP) (obsolete)
- StarLan
- Spanning tree protocol
- Token ring
- Unidirectional Link Detection (UDLD)
- x.25
В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS, UDI.
Сетевой уровень [ ]
Сетевой уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.
Протоколы сетевого уровня маршрутизируют данные от источника к получателю.
На этом уровне работает маршрутизатор (роутер).
Сетевой уровень — доставка пакета:
- между любыми двумя узлами сети с произвольной топологией;
- между любыми двумя сетями в составной сети;
- сеть — совокупность компьютеров, использующих для обмена данными единую сетевую технологию;
- маршрут — последовательность прохождения пакетом маршрутизаторов в составной сети.
На сетевом уровне работают протоколы еще одного типа, которые отвечают за отображение адреса узла, используемого на сетевом уровне, в локальный адрес сети. Такие протоколы часто называют протоколами разрешения адресов — Address Resolution Protocol, ARP. Иногда их относят не к сетевому уровню, а к канальному, хотя тонкости классификации не изменяют сути.
Пример: IP/IPv4/IPv6 (Internet Protocol), IPX (Internetwork Packet Exchange, протокол межсетевого обмена), X.25 (частично этот протокол реализован на уровне 2) CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security), ICMP (Internet Control Message Protocol), RIP (Routing Information Protocol), OSPF (Open Shortest Path First), ARP (Address Resolution Protocol).
Транспортный уровень [ ]
Транспортный уровень (Transport layer) обеспечивает приложениям или верхним уровням стека — прикладному и сеансовому — передачу данных с той степенью надежности, которая им требуется. Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное — способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов.
Транспортный уровень — обеспечение доставки информации с требуемым качеством между любыми узлами сети:
- разбивка сообщения сеансового уровня на пакеты , их нумерация;
- буферизация принимаемых пакетов;
- упорядочивание прибывающих пакетов;
- адресация прикладных процессов;
- управление потоком.
Пример: ATP (AppleTalk Transaction Protocol), CUDP (Cyclic UDP), DCCP (Datagram Congestion Control Protocol), FCP (Fiber Channel Protocol), IL (IL Protocol), NBF (NetBIOS Frames protocol), NCP (NetWare Core Protocol), SCTP (Stream Control Transmission Protocol), SPX (Sequenced Packet Exchange), SST (Structured Stream Transport), TCP (Transmission Control Protocol), UDP (User Datagram Protocol).
Сеансовый уровень [ ]
Сеансовый уровень (Session layer) обеспечивает управление диалогом: фиксирует, какая из сторон является активной в настоящий момент, предоставляет средства синхронизации. Последние позволяют вставлять контрольные точки в длинные передачи, чтобы в случае отказа можно было вернуться назад к последней контрольной точке, а не начинать все сначала. На практике немногие приложения используют сеансовый уровень, и он редко реализуется в виде отдельных протоколов, хотя функции этого уровня часто объединяют с функциями прикладного уровня и реализуют в одном протоколе.
Сеансовый уровень — управление диалогом объектов прикладного уровня:
- установление способа обмена сообщениями (дуплексный или полудуплексный);
- синхронизация обмена сообщениями;
- организация «контрольных точек» диалога.
Пример: ADSP (AppleTalk Data Stream Protocol), ASP (AppleTalk Session Protocol), H.245 (Call Control Protocol for Multimedia Communication), ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS (Internet Storage Name Service), L2F (Layer 2 Forwarding Protocol), L2TP (Layer 2 Tunneling Protocol), NetBIOS (Network Basic Input Output System), PAP (Password Authentication Protocol), PPTP (Point-to-Point Tunneling Protocol), RPC (Remote Procedure Call Protocol), RTCP (Real-time Transport Control Protocol), SMPP (Short Message Peer-to-Peer), SCP (Secure Copy Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol).
Представительный уровень [ ]
Представительный уровень (Presentation layer) имеет дело с формой представления передаваемой по сети информации, не меняя при этом ее содержания. За счет уровня представления информация, передаваемая прикладным уровнем одной системы, всегда понятна прикладному уровню другой системы. С помощью средств данного уровня протоколы прикладных уровней могут преодолеть синтаксические различия в представлении данных или же различия в кодах символов, например в кодах ASCII и EBCDIC. На этом уровне может выполняться шифрование и дешифрование данных, благодаря которому секретность обмена данными обеспечивается сразу для всех прикладных служб. Примером такого протокола является протокол Secure Socket Layer (SSL), который обеспечивает секретный обмен сообщениями для протоколов прикладного уровня стека TCP/IP.
Уровень представления — согласовывает представление (синтаксис) данных при взаимодействии двух прикладных процессов:
- преобразование данных из внешнего формата во внутренний;
- шифрование и расшифровка данных.
Пример: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation RDP — Remote Desktop Protocol, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.
Прикладной уровень [ ]
Прикладной уровень (Application layer) — это в действительности просто набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, принтеры или гипертекстовые Web-страницы, а также организуют совместную работу, например с помощью протокола электронной почты. Единица данных, которой оперирует прикладной уровень, обычно называется сообщением (message).
Прикладной уровень — набор всех сетевых сервисов, которые предоставляет система конечному пользователю:
- идентификация, проверка прав доступа;
- принт- и файл-сервис, почта, удаленный доступ.
Пример: HTTP, POP3, SMTP, FTP, XMPP, OSCAR, Modbus, SIP, TELNET
Источник