- Фототрофы
- Содержание:
- Процесс фотосинтеза у бактерий
- Примеры бактерий-фототрофов
- Распространение фототрофных бактерий
- Значение фототрофных бактерий
- Понятие фототрофа в биологии, примеры, тип питания
- Места обитания фототрофных бактерий
- Описание фототрофных организмов и примеры
- Тип питания фототрофов
- Энциклопедия «Жизнь растений» ФОТОТРОФНЫЙ, ГЕТЕРОТРОФНЫЙ И МИКСОТРОФНЫЙ ТИПЫ ПИТАНИЯ ВОДОРОСЛЕЙ
Фототрофы
Фототрофные прокариотическиеорганизмы, не вызывают заболевания у людей, тогда как хемотрофы не редко являются паразитическими организмами.
Содержание:
Процесс фотосинтеза у бактерий
Все фотосинтезрующие бактерии содержат хлорофилл и каротиноиды. Последние, принимают участие в фотосинтезе, передавая энергию поглощаемого света бактериохлорофиллу.
В основе бактериального фотосинтеза лежит превращение световой энергии, поглощенной пигментами, в химическую энергию макроэргических связей АТФ, образуемой в процессе фотофосфорилирования и используемой впоследствии для усвоения углекислого газа и процессов биосинтеза.
Общие черты фотосинтеза бактерий и зеленых растений сходны. Отличие состоит в том, что у зеленых растений источником водорода служит вода, окисляемая до кислорода. В результате фотосинтеза у зеленых растений выделяется кислород.
У фотолитотрофных (фотосинтезирующих бактерий, использующие в качестве доноров электронов неорганические вещества) – источником водорода для фотосинтеза является сероводород или молекулярный водород. В данном случае кислород не выделяется.
Кроме того, у растений для восстановления одной молекулы углекислоты расходуется четыре кванта энергии, у бактерий – только один квант. Конечные продукты фотосинтеза у растений и бактерий одинаковы. Это соединения типа углеводов.
Примеры бактерий-фототрофов
К фотосинтезирующим бактериям кроме зеленых бактерий, относятся: гелиобактерии, пурпурные несеробактерии, пурпурные серобактерии.
Гелиобактерии – единственные грамположительные фототрофы, способные к образованию настоящих эндоспор.
Описано два вида, различающиеся морфологически:
- Heliobacterium chlorum – длинные одиночные палочки (1,0х7,0–10 мкм), передвигающиеся путем скольжения;
- Heliobacillus mobilis – короткие палочковидные бактерии с перитрихиально расположенными жгутиками.
Гелиобактерии – облигатные (обязательные) фототрофы. Рост и развитие бактерий, данной группы возможны только на свету в анаэробных условиях. Источниками углерода для них служат органические кислоты (молочная, уксусная, масляная, пировиноградная)
Фиксация углекислого газа осуществляется в цикле Кальвина. Дыхательный метаболизм отсутствует. Гелиобактерии являются активными азотфиксаторами, обитают в почвах и содовых озерах.
Гелиобакерии осуществляют аноксигенный фотосинтез благодаря наличию в клетках единственного бактериохлорофилла g. У других бактерий с бескислородным типом фотосинтеза данное вещество не обнаружено. Как и у всех фотосинтезирующих бактерий в клетках гелиобактерий, кроме бактериохлорофилла g, присутствует незначительное количество каротиноидов.
Несерные пурпурные бактерии – фотоорганотрофы (фотосинтезирующие организмы, использующие в качестве донора электронов органические соединения). Они входят в семейство Rhodospiriliaceae, представленное двумя родами: Rhodospirillum– клетки спиральной формы и Rhodospirillum– клетки палочковидной формы.
Эта группа бактерий способна в качестве источника энергии использовать не только солнечный свет, но и аэробное окисление. На свету они развиваются только в анаэробных условиях. Развитие несерных пурпурных бактерий в темноте возможно только при наличии кислорода и серы. Они характеризуются полным набором основных дыхательных ферментов.
Пурпурные серобактерии – полифилетическая группа бактерий, характеризующаяся различными морфологическими формами – кокки, палочки, спириллы. Представители группы живут в анаэробных условиях и развиваются на свету при наличии в среде сероводорода и тиосульфата натрия.
Пурпурные серобактерии вырабатывают особый пигмент типа хлорофилла – бактериопурин. При помощи данного пигмента они используют световую энергию для построения органического вещества тела из углекислого газа и неорганических солей.
Пурпурные серобактерии относят к фотолитотрофам.
Распространение фототрофных бактерий
Фототрофные бактерии – это типичные водные микроорганизмы. Распространены они, как в пресных, так и в соленых водоемах. Очень часто встречаются в местах, где присутствует сероводород, в мелководье или на значительной глубине. В почве фототрофных бактерий мало, но при затоплении водой они развиваются очень активно.
Распространение фототрофных прокариот в различных средах определяется присутствием трех основных факторов: света, молекулярного кислорода, питательной среды.
Потребность в световой энергии и диапазоне длин поглощаемого света для фотосинтеза определяется набором светособирающих пигментов. Прокариоты с кислородным типом фотосинтеза поглощают свет в том же диапазоне, что и водоросли, и высшие растения.
Пурпурные и зеленые бактерии, гелиобактерии – развиваются в водоемах под различной мощности слоем цианобактерий и водорослей, поглощающих свет с длиной волны до 750 нм. Фотосинтез пурпурных и зеленых бактерий, гелиобактерий, в данном случае, тесно связан со способностью цианобактерий и водорослей поглощать свет в красной и инфракрасной областях спектра за пределами поглощения хлорофиллов. Крайняя граница этой части спектра устанавливается способностью пигментов некоторых пурпурных бактерий (бактериохлорофиллов) поглощать свет с длиной волны до 1100 нм.
Установлены виды фотосинтезирующих прокариотов способных успешно развиваться в водоемах на глубине до 20–30 метров за счет активности пигментов другой группы – коратиноидов.
По отношению к молекулярному кислороду в числе фототрофных прокариот присутствуют строгие анаэробы, факультативные анаэробы, микроаэрофилы, организмы, образующие кислород внутриклеточно.
Различия в питательных веществах, необходимых для метаболизма, так же значительны. Они варьируют от сложных пищевых потребностей до минимального уровня.
Значение фототрофных бактерий
Фототрофные бактерии в природе играют огромную роль в круговороте различных веществ, значимых для жизни других организмов. Цианобактерии – занимают значительное место в круговороте углерода и азота, серобактерии – серы.
Научное значение фототрофных бактерий так же велико. Различные виды фотосинтезирующих прокариот используют для исследования процесса фотосинтеза в различных его аспектах, особенно начальные стадии. Пурпурные и зеленые бактерии используют для уточнения организации фотосинтетического аппарата, путей биосинтеза пигментов, метаболизма углерода, эволюции фотосинтезирующих форм и самого фотосинтеза.
Источник
Понятие фототрофа в биологии, примеры, тип питания
В биологии фототрофами являются бактерии, относящиеся к группе автотрофных организмов и поглощающие свет в качестве источника энергии. Свет поддерживает разнообразные метаболические процессы в микроорганизмах. Фототрофы часто используют при исследовании процессов и эволюции фотосинтеза в разных аспектах, а также в поиске путей пигментного биосинтеза и углеродного метаболизма.
- Места обитания фототрофных бактерий
- Описание фототрофных организмов и примеры
- Тип питания фототрофов
Чтобы научиться отличать их от других бактерий, необходимо знать некоторые особенности, которые могут отличаться у разных типов этих организмов.
Места обитания фототрофных бактерий
Фототрофные бактерии распространены преимущественно в соленых и пресных водоемах. Чаще всего они обитают в местах с наличием сероводорода. Находиться они могут на любой глубине. Редко такие организмы встречаются в почвах, но если произойдет затопление земли, то может наблюдаться интенсивный рост находящихся в ней фототрофов.
Это интересно: дикорастущие растения и их разнообразие.
Развитие фототрофов легко заметить даже без микроскопических исследований и постановки накопительных культур, поскольку они часто покрывают подводные объекты яркими пленками. Серные источники, бухты, лиманы, пруды и озера полны такими фототрофными скоплениями. При массовом развитии этих организмов может измениться цвет водоема, в которых они обитают. С небольшим количеством бактерий окрашиваются только некоторые слои воды. Окрашивание нескольких водных слоев обычно происходит на дне озер, где присутствует сероводород.
Описание фототрофных организмов и примеры
Фототрофные организмы еще называют фотосинтезирующими микроорганизмами. Световая энергия, которую поглощают фототрофы, помогает биосинтезу клеточных компонентов и энергозависимым процессам, обеспечивающим рост бактерий.
Фототрофы представлены:
- Зелеными и пурпурными бактериями,
- Гелиобактериями,
- Цианобактериями,
- Красными, зелеными, диатомовыми и другими водорослями.
Это интересно: какая часть клетки является самой главной?
Самыми древними фотосинтезирующими автотрофами являются зеленые и пурпурные бактерии. Именно с них начались исследования фототрофной группы. По организации своей группы они похожи с сине-зелеными водорослями. Они получили название сине-зеленых бактерий, или цианобактерий, так как они являются прокариотами. Но по фотосинтезирующей форме, составу хлорофиллов и пигментам зеленые и пурпурные серобактерии сильно отличаются от других фототрофов.
Фотосинтез происходит в хлоропластах — специальных зеленых пластидах, расположенных в клетках. Хлоропласты содержат в себе хлорофилл, являющийся пигментом, окрашивающим части автотрофов в зеленый оттенок. Процесс происходит только при наличии воды и углекислого газа, выделяющегося из живых организмов при дыхании. Большая часть фототрофов выделяет кислород, который жизненно необходим объектам живой природы.
Это интересно: что такое атф-молекула, ее функции и роль в организме.
Строение фотосинтетического аппарата большинства фототрофов включает:
- Светособирающие пигменты, поглощающие световую энергию и передающую ее в реакционный центр,
- Фотохимические реакционные центры, в которых электромагнитная форма энергии трансформируется в химическую,
- Фотосинтетические электротранспортные системы, которые обеспечивают перенос электронов и запасают энергию в молекулах АТФ (аденозинтрифосфат).
Большая часть фототрофов представлена автотрофными организмами, поэтому их еще называют фотоавтотрофы. У них происходит фиксирование неорганического углерода. Таким организмам часто противопоставляются хемотрофы, получающие энергию в результате окислительно-восстановительных реакций, в которых окисляются доноры электронов. В фотоавтотрофных микроорганизмах может происходить синтез своих собственных продуктов питания, которые они получают из неорганических веществ под воздействием световой энергии и углекислого газа. К фотоавтотрофам относится ряд зеленых растений, цианобактерий и множество фотосинтезирующих бактерий.
Это интересно: о единстве органического мира свидетельствуют какие факторы?
Другой группой фототрофов выступают организмы, которые называют фотогетеротрофами. Для них свойственно использование света в качестве источника энергии и органических соединений как источника углерода. Синтез АТФ фотогетеротрофами происходит с помощью фотофосфорилирования. Поскольку эти бактерии не могут фиксировать бесцветный газ, построение биомолекул микроорганизма осуществляется с готовыми органическими соединениями. Группа таких фототрофов включает пурпурные и зеленые несерные бактерии, гелиобактерии, галобактерии и некоторые виды цианобактерий, способные расти гетеротрофно.
Тип питания фототрофов
Восполнение запасов энергии и нужных веществ клеточными организмами осуществляется с питанием. Все разновидности питания, которые сегодня известны науке, встречаются у бактерий. Процесс обмена веществ у живых организмов имеет практически один и тот же механизм, но у микроорганизмов имеется ряд особенностей в этом плане.
Это интересно: как определить валентность по таблице Менделеева?
Световая энергия преобразуется фототрофными микроорганизмами в фотосинтетические пигменты, которые могут быть:
хлорофиллами. При фотосинтезе происходит выделение кислорода. Этот процесс называется кислородный или оксигенный фотосинтез. Такими процессами характеризуются цианобактерии.
- бактериохлорофиллами. Пигменты, относящиеся к хлорофиллам, не выделяют кислород во время фотосинтеза. Используемый пигмент реагирует на свет с волной другой длины. Он не может поглощаться ни растениями, ни цианобактериями, ни водорослями. Аноксигенный, или бескислородный, фотосинтез характерен для пурпурных, зеленых и гелиобактерий.
- бактериородопсинами. Такой пигмент фотосинтеза встречается только у галобактерий, который содержится в пурпурных мембранах.
Есть теория, что фотосинтез может осуществляться и с другим источником света. В месте подводного термального источника обнаружили серобактерии, которые обитают на глубине ниже 2 км, куда солнечный свет не может проникнуть. Есть предположение, что происходит поглощение световых волн из термального источника бактериохлорофиллом, содержащимся в серобактериях.
Главное биологическое назначение фототрофов — это обеспечение всего живого кислородом. Некоторые виды обеспечивают круговорот азота, серы и других веществ в природе. Как видно, микроорганизмы играют большую роль в этом огромном мире.
Источник
Энциклопедия «Жизнь растений»
ФОТОТРОФНЫЙ, ГЕТЕРОТРОФНЫЙ И МИКСОТРОФНЫЙ ТИПЫ ПИТАНИЯ ВОДОРОСЛЕЙ
ФОТОТРОФНЫЙ, ГЕТЕРОТРОФНЫЙ И МИКСОТРОФНЫЙ ТИПЫ ПИТАНИЯ ВОДОРОСЛЕЙ
Фотоавтотрофный способ питания с помощью фотосинтеза по масштабам и значимости стал, как мы видели, одним из основных способов питания водорослей и других зеленых растений. В разных отделах водорослей есть виды, которые являются строгими (облигатными) фотосинтетиками. К их числу относятся, например, из сине-зеленых водорослей Anabaena cylindrica, A. variabilis, Anacystis nidulans, некоторые штаммы Nostoc muscorum и др.; из зеленых — ряд видов Chlorococcum, некоторые виды Chlamydomonas, такие виды Xanthophyta, как Polyedriella helvetica и Monodus subterranea; ряд штаммов диатомей.
Однако многие водоросли обладают способностью достаточно легко переключаться в определенных условиях с фотоавтотрофного способа питания на ассимиляцию различных органических соединений и осуществлять гетеротрофный или фотогетеротрофный тип питания или сочетать эти способы питания с фотосинтезом.
Способность к росту на органических средах в темноте или на свету в отсутствие С02 показана для большого числа видов, относящихся к сине-зеленым, зеленым, желто-зеленым, диатомовым и другим водорослям.
Известны также формы водорослей, которые относятся к числу ауксотрофных организмов и нуждаются в экзогенных источниках некоторых физиологически активных органических веществ, в частности в витаминах В12, В1 в биотине.
Таким образом, многие водоросли, обладая способностью осуществлять фотосинтез, не являются в то же время облигатными фотоавтотрофными организмами и отличаются высокой пластичностью и большим разнообразием типов питания.
Способность водорослей усваивать те или иные органические вещества существенным образом зависит не только от химической природы этих веществ, но и от генетических свойств штамма. Так, например, сравнительное изучение способности различных видов и штаммов хлореллы использовать для гетеротрофного роста (в темноте) такие углеводы, как глюкоза, галактоза, манноза, фруктоза, арабиноза, мальтоза, лактоза и сахароза, показало, что наилучшим источником углерода для большинства культур является глюкоза. Вместе с тем среди изученных форм хлореллы были обнаружены и такие штаммы, которые росли на галактозе значительно лучше, чем на глюкозе. Ряд штаммов эффективно иснользовали как глюкозу, так и галактозу. Некоторые формы использовали фруктозу примерно так же, как глюкозу, но в несколько раз хуже росли на среде с галактозой. Малопригодными в качестве источника углерода для большинства культур оказались манноза, фруктоза, лактоза и сахароза, хотя некоторые штаммы хлореллы могли использовать и эти сахара. Такое же разнообразие свойств штаммов в отношении их способности использовать различные сахара найдено и для других зеленых, а также сине-зеленых и желто-зеленых и некоторых других водорослей.
В качестве органического источника углерода для гетеротрофного роста водорослей пригодны также ацетат, пируват и некоторые другие органические кислоты, хотя степень и характер их использования, так же как и в случае ассимиляции сахаров, зависит от свойств культур.
Гетеротрофпый рост водорослей в темноте идет значительно медленное, чем автотрофный рост на свету. При освещении водорослей, культивируемых на средах, например с глюкозой, но без С02, наблюдается повышение скорости их роста и усвоения глюкозы. При этом культуры переходят к фотогетеротрофпому типу питания, когда АТФ, возникающая в реакциях фотосинтетического фосфорилирования, используется для ассимиляции глюкозы. На примере ряда штаммов хлореллы показано, что в случае обеспечения углекислотой культур, выращиваемых на свету на среде с глюкозой, клетки водорослей могут переходить к миксотрофному типу питания. Скорость роста и продуктивность таких культур превышают скорость их роста при автотрофном питании и равна примерно сумме их продуктивности при фотогетеротрофном и автотрофном питании. Вместе с тем это, очевидно, не является общей закономерностью, и соотношение различных типов питания в клетках водорослей может существенно меняться в зависимости от физиолого-биохимических свойств культуры и особенностей организации внутриклеточных регуляторных процессов. В результате изучения путей биохимических превращений органических веществ, поглощаемых клетками разных водорослей в условиях фотогетеротрофного и миксотрофного питания, а также изменения активности хлоропластных и цитоплазматических ферментов при переходе от автотрофного к указанным типам питания, сейчас начинают проясняться некоторые внутренние механизмы перестройки метаболизма водорослей при смене типов питания. В ряде случаев переход к фотогетеротрофному питанию сопряжен с индукцией дополнительных ферментных систем, участвующих в преобразовании поглощаемых клеткой органических веществ. Так, например, показана индукция изоцитратлиазы у Euglena gracilis под влиянием ацетата. У некоторых форм хлореллы найдена под влиянием сахарозы индукция инвертазы, которая расщепляет молекулу этого сахара на глюкозу и фруктозу. Активность некоторых ферментов фотосинтетического аппарата, в частности ферментов цикла Кальвина, может несколько снижаться при переходе культур водорослей к использованию органических источников углерода. Поглощаемые клетками органические вещества иногда окисляются до С02, которая в дальнейшем может использоваться в реакциях фотосинтеза. С другой стороны, может иметь место и прямое использование органических источников углерода: ацетата — через цикл глиоксиловой кислоты, глюкозы — через гексокиназпую реакцию. Возможность прямой (не опосредованной через фотосинтез) ассимиляции углерода из органических источников показана, например, для Chlamydomonas mundata и Chlamydobotrys stellata, когда усвоение ацетата этими водорослями практически не изменялось при экспериментальном выключении фотосинтетического аппарата с помощью специфических ингибиторов фотосинтеза. Аналогичную картину наблюдали на Chlamydomonas reinhardii: фотосинтетический аппарат ингибировали с помощью рифампицина — специфического ингибитора синтеза хлоропластных РНК, а рост водорослей поддерживали с помощью глюкозы.
Помимо использования органических соединений в качестве источника углерода, водоросли способны переключаться с ассимиляции неорганического нитратного азота на усвоение органических источников азота — мочевины, амидов и некоторых аминокислот. Гетеротрофпая ассимиляция азота — усвоение азота из органических соединений — неоднократно доказана для водорослей как факультативная форма азотного питания.
При этом, так же как и в случае усвоения углеводов и органических кислот, использование водорослями аминокислот существенным образом зависит от физиолого-биохимических свойств штаммов. Показано, что такие аминокислоты, как аргинин, гликокол, орнитин, могут использовать все штаммы хлореллы, в то время как аланин, аспарагин, серии, цистеин — только отдельные культуры. Лизин, валин, гистидин, метионин и триптофан приводили к подавлению роста некоторых форм водорослей.
Одной из характерных особенностей некоторых представителей сине-зеленых водорослей является их способность обходиться вообще без связанных форм азота и осуществлять фиксацию свободного азота атмосферы аналогично азотфиксирующим микроорганизмам.
Многообразие и пластичность способов питания водорослей позволяют им иметь широкие ареалы и занимать разнообразные экологические ниши.
Исследование способов питания водорослей позволило ввести многие из них в промышленную (массовую) культуру.
Источник