Альтернативные источники энергии. Часть 4 — Достоинства солнечной электроэнергетики
Избранные главы из книги В. Германович, А. Турилин «Альтернативные источники энергии. Практические конструкции по использованию энергии ветра, солнца, воды, земли, биомассы».
Продолжение
Начало читайте здесь:
Заказать книгу можно в интернет-магазине издательства |
3.1. Достоинства солнечной электроэнергетики
Перспективы развития
Энергия Солнца экологически чистая уже потому, что миллиарды лет поступает на Землю, и все земные процессы с ней свыклись. Поток солнечной энергии люди просто обязаны взять под свой контроль и максимально использовать, сохраняя тем самым неизмененным уникальный земной климат.
Несколько ключевых цифр. За год на Землю приходит 10 18 кВт·ч солнечной энергии, всего 2% которой эквивалентны энергии, получаемой от сжигания 2×10 12 т условного топлива. Эта величина сопоставима с мировыми топливными ресурсами – 6×10 12 т условного топлива. Так что в перспективе солнечная энергия вполне может стать основным источником света и тепла на Земле, отмечает доктор физико-математических наук Б. Лучков (http://www.pomreke.ru/energy-future/).
Причина медленного развития солнечной энергетики проста: средний поток радиации, поступающий на поверхность Земли от нашего светила, очень слаб.
Но с применением более простых по конструкции, а значит, и более дешевых гелиостатов себестоимость электроэнергии, вырабатываемой солнечными электростанциями, должна существенно снизиться. Фототермические и фотоэлектрические преобразователи света Существуют два основных способа преобразования солнечной энергии: В первом, простейшем, фототермическим, теплоноситель (чаще всего вода) нагревается в коллекторе (системе светопоглощающих труб) до высокой температуры и используется для отопления помещений. Коллектор устанавливают на крыше здания так, чтобы его освещенность в течение дня была наибольшей. Часть тепловой энергии аккумулируется: краткосрочно (на несколько дней) – тепловыми аккумуляторами, долгосрочно (на зимний период) – химическими. Солнечный коллектор простой конструкции площадью 1 м 2 за день может нагреть 50–70 л воды до температуры 80–90 °С. Использование солнечных коллекторов позволяет снабжать горячей водой многие дома в южных районах.
Еще в 30-х годах прошлого века, когда КПД первых фотоэлементов едва доходил до 1%, об этом говорил основатель Физико-технического института (ФТИ) академик А. Ф. Иоффе. Предвидение ученого воплотилось в жизнь в конце 1950-х годов с запуском искусственных спутников Земли, главным энергетическим источником которых стали панели солнечных батарей. Сейчас во всех странах мира идет активная продажа солнечных батарей. Солнечные элементы – принципы работы Солнечные элементы (СЭ) изготавливаются из материалов, которые напрямую преобразуют солнечный свет в электричество. Большая часть из коммерчески выпускаемых в настоящее время СЭ изготавливается из кремния (химический символ Si). Устройство солнечного элемента показано на рис. 3.1.
Типы солнечных элементов. СЭ может быть следующих типов:
Различие между этими формами в том, как организованы атомы кремния в кристалле. Различные СЭ имеют разный КПД преобразования энергии света. Моно- и поликристаллические элементы имеют почти одинаковый КПД, который выше, чем у СЭ, изготовленных из аморфного кремния (http://www.solarhome.ru/ru/basics/). Прежде всего, в СЭ имеется задний контакт и 2 слоя кремния разной проводимости. Сверху имеется сетка из металлических контактов и антибликовое просветляющее покрытие, которое дает СЭ характерный синий оттенок. В последние годы разработаны новые типы материалов для СЭ. Например, тонкопленочные СЭ из медь-индий-диселенида и из CdTe (теллурид кадмия). Эти СЭ в последнее время также коммерчески используются. КПД солнечных элементов:
Пиковый ватт. СЭ производит электричество, когда освещается светом. В зависимости от интенсивности света (измеряемой в Вт/м 2 ), солнечный элемент производит больше или меньше электричества: яркий солнечный свет более предпочтителен, чем тень, и тень более предпочтительна, чем электрический свет. Для сравнения СЭ и модулей необходимо знать так называемую номинальную мощность элемента или модуля. Номинальная мощность, выращенная в ваттах пиковой мощности Wp, – это мера того, сколько электроэнергии может произвести фотоэлектрический модули при оптимальных условиях. Для определения и сравнения номинальной мощности солнечных панелей, выходная мощность измеряется при стандартных тестовых условиях (СТУ). Эти условия предполагают:
СЭ падает при повышении его температуры).
|