Метод координат
Для решения задачи по стереометрии координатным методом нужно выбрать декартову систему координат. Ее можно выбрать как угодно, главное, чтобы она была удобной. Приведем примеры выбора системы координат в кубе, пирамиде и конусе:
Далее необходимо найти координаты основных точек в выбранной системе координат. Это могут быть вершины объемной фигуры, середины ребер или любые другие точки, указанные в условии задачи. Найдем координаты куба и правильной пирамиды (предположим, что все ребра равны \(4\)):
Куб: Очевидно, что координаты точки \(A\) в начале координат — \((0;0;0)\). т. \(B\) — \((4;0;0)\), т. \(G\) — \((4;4;4)\) и т.д. (Рис. 1).
С кубом все просто, но в других фигурах могут возникнуть трудности с нахождением координат.
Давайте рассмотрим правильную пирамиду \(ABCD\):
- У \(т. A\) координаты \((0;0;0)\), потому что она лежит в начале координат.
Координату \(x\) точки \(С\) можно получить, опустив перпендикуляр \(CE\) из \(т.С\) на ось \(OX\). (см. Рис. 2). Получится \(т.E\), указывающая на искомую координату по \(x\) – 2.
Координату \(y\) точки \(С\) тоже получаем, опустив перпендикуляр \(CF\) на ось \(OY\). Координата \(y\) \(т.С\) будет равна длине отрезка \(AF=CE\). Найдем его по теореме Пифагора из треугольника \(AFC\): $$
И найдем координаты вершины пирамиды (\(т.D\)). (Рис. 3) Координаты \(X\) и \(Y\) у точки \(D\) совпадают с координатами \(X\) и \(Y\) у точки \(H\). Напомню, что высота правильной треугольной пирамиды падает в точку пересечения медиан, биссектрис и высот. Отрезок \(EH=\frac<1><3>*CE=\frac<1><3>*\sqrt<12>\) (медианы в треугольнике точкой пересечения делятся в отношении как \(\frac<1><3>\)) и равен координате точки \(D\) по \(Y\). Длина отрезка \(IH=2\) будет равна координате точки \(D\) по \(X\). А координата по оси \(Z\) равна высоте пирамиде: $$
Координаты вектора
Вектор – отрезок, имеющий длину и указывающий направление.
На самом деле, понимать, что такое вектор для решения задач методом координат необязательно. Можно просто использовать это понятие, как необходимый инструмент для решения задач по стереометрии. Любое ребро или отрезок на нашей фигуре мы будем называть вектором.
Для того, чтобы определить координаты вектора, нужно из координат конечной точки вычесть координаты начальной точки. Пусть у нас есть две точки (Рис. 4) : $$ т.А(x_A,y_A,z_A); $$ $$ т.B(x_B,y_B,z_B); $$ Тогда координаты вектора \(\vec
Скрещивающиеся прямые
И так, мы научились находить координаты точек, и при помощи них определять координаты векторов. Теперь познакомимся с формулой нахождения косинуса угла между скрещивающимися прямыми (векторами). Пусть даны два вектора: $$ a=
Уравнение плоскости
В задачах №14 (С2) ЕГЭ по профильной математике часто требуется найти угол между прямой и плоскостью и расстояние между скрещивающимися прямыми. Но для этого вы должны уметь выводить уравнение плоскости. В общем виде уравнение плоскости задается формулой: $$ A*x+B*y+C*z+D=0,$$ где \(A,B,C,D\) – какие-то числа.
Если найти \(A,B,C,D\), то мы мы найдем уравнений плоскости. Плоскость однозначно задается тремя точками в пространстве, значит нужно найти координаты трех точек, лежащий в данной плоскости, а потом подставить их в общее уравнение плоскости.
Например, пусть даны три точки:
Подставим координаты точек в общее уравнение плоскости:
$$\begin
Получилась система из трех уравнений, но неизвестных 4: \(A,B,C,D\). Если наша плоскость не проходит через начало координат, то мы можем \(D\) приравнять \(1\), если же проходит, то \(D=0\). Объяснение этому простое: вы можете поделить каждое ваше уравнения на \(D\), от этого уравнение не изменится, но вместо \(D\) будет стоять \(1\), а остальные коэффициенты будут в \(D\) раз меньше.
Теперь у нас есть три уравнения и три неизвестные – можем решить систему:
Найти уравнение плоскости, проходящей через точки $$ K(1;2;3);\,P(0;1;0);\,L(1;1;1). $$ Подставим координаты точек в уравнение плоскости \(D=1\): $$\begin
Расстояние от точки до плоскости
Зная координаты некоторой точки \(M(x_M;y_M;z_M)\), легко найти расстояние до плоскости \(Ax+By+Cz+D=0:\) $$ \rho=\frac<|A*x_M+B*y_M+C*z_M+D|><\sqrt>. $$
Найдите расстояние от т. \(H (1;2;0)\) до плоскости, заданной уравнением $$ 2*x+3*y-\sqrt<2>*z+4=0.$$
Из уравнения плоскости сразу находим коэффициенты: $$ A=2,\,B=3,\,C=-\sqrt<2>,\,D=4.$$ Подставим их в формулу для нахождения расстояния от точки до плоскости. $$ \rho=\frac<|2*1+3*2-\sqrt<2>*0+4|><\sqrt<2^2+3^2+<-\sqrt<2>>^2>>. $$ $$ \rho=\frac<12><\sqrt<16>>=3.$$
Расстояние между скрещивающимися прямыми
Расстояние между скрещивающимися прямыми – это расстояние от любой точки одной из прямых до параллельной ей плоскости, проходящей через вторую прямую.
Таким образом, если требуется найти расстояние между скрещивающимися прямыми, то нужно через одну из них провести плоскость параллельно второй прямой. Затем найти уравнение этой плоскости и по формуле расстояния от точки до плоскости найти расстояние между скрещивающимися прямыми. Точку на прямой можно выбрать произвольно (у которой легче всего найти координаты).
Рассмотрим задачу из досрочного ЕГЭ по математике 2018 года.
Дана правильная треугольная призма \(ABCFDE\), ребра которой равны 2. Точка \(G\) — середина ребра \(CE\).
- Докажите, что прямые \(AD\) и \(BG\) перпендикулярны.
- Найдите расстояние между прямыми \(AD\) и \(BG\).
Решим задачу полностью методом координат.
Нарисуем рисунок и выберем декартову систему координат. (Рис 5).
Источник
Координатно-векторный метод решения стереометрических задач при подготовке к ЕГЭ
Разделы: Математика
- выработать умение рассматривать различные подходы к решению задач и проанализировать “эффект” от применения этих способов решения;
- выработать умение учащегося выбирать метод решения задачи в соответствии со своими математическими предпочтениями, базирующимися на более прочных знаниях и уверенных навыка;
- выработать умение составить план последовательных этапов для достижения результата;
- выработать умение обосновать все предпринимаемые шаги и вычисления;
- повторить и закрепить различные темы и вопросы стереометрии и планиметрии, типовые стереометрические конструкции, связанные с решением текущих задач;
- развить пространственное мышление.
- анализ различных методов решения задачи: координатно-векторный метод, применение теоремы косинусов, применение теоремы о трех перпендикулярах;
- сравнение преимуществ и недостатков каждого метода;
- повторение свойств куба, треугольной призмы, правильного шестигранника;
- подготовка к сдаче ЕГЭ;
- развитие самостоятельности при принятии решения.
В кубе ABCDA1B1C1D1 с ребром 1 точка О – центр грани ABCD.
а) угол между прямыми A1D и BO;
б) расстояние от точки B до середины отрезка A1D.
Решение пункта а).
1 способ. Координатно-векторный метод
Поместим наш куб в прямоугольную систему координат как показано на рисунке, вершины A1 (1; 0; 1), D (1; 1; 0), B1 (0; 0; 1), O (½; ½; 0).
Направляющие векторы прямых A1D и B1O:
<0; 1; -1>и
<½; ½; -1>;
искомый угол φ между ними находим по формуле:
cos∠φ = ,
откуда∠φ = 30°.
2 способ. Используем теорему косинусов.
1) Проведем прямую В1С параллельно прямой A1D. Угол CB1O будет искомым.
2) Из прямоугольного треугольника BB1O по теореме Пифагора:
B1O = .
3) По теореме косинусов из треугольника CB1O вычисляем угол CB1O:
cos CB1O =
, искомый угол составляет 30°.
Замечание. При решении задачи 2-м способом можно заметить, что по теореме о трех перпендикулярах COB1 = 90°, поэтому из прямоугольного ∆ CB1O также легко вычислить косинус искомого угла.
Решение пункта б).
1 способ. Воспользуемся формулой расстояния между двумя точками
Пусть точка E – середина A1D, тогда координаты E (1; 1/2; ½), B (0; 0; 0).
BE = .
2 способ. По теореме Пифагора
Из прямоугольного ∆ BAE с прямым BAE находим BE =
.
В правильной треугольной призме ABCA1B1C1 все ребра равны a. Найти угол между прямыми AB и A1C.
1 способ. Координатно-векторный метод
Координаты вершин призмы в прямоугольной системе при расположении призмы, как на рисунке: A (0; 0; 0), B (a;
; 0), A1(0; 0; a), C (0; a; 0).
Направляющие векторы прямых A1C и AB:
и
<
a;
; 0> ;
cos φ = ;
φ = arccos
.
2 способ. Используем теорему косинусов
cos φ = .
(Из сборника ЕГЭ-2012. Математика: типовые экзаменационные варианты под ред. А.Л.Семенова, И.В.Ященко)
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1, все рёбра которой равны 1, найдите расстояние от точки E до прямой B1C1.
1 способ. Координатно-векторный метод
1) Поместим призму в прямоугольную систему координат, расположив координатные оси, как показано на рисунке. СС1, СВ и СЕ попарно перпендикулярны, поэтому можно направить вдоль них координатные оси. Получаем координаты:
С1 (0; 0; 1), Е (; 0; 0), В1 (0;1;1).
2) Найдем координаты направляющих векторов для прямых С1В1 и С1Е:
(0;1;0),
(
;0;-1).
3) Найдем косинус угла между С1В1 и С1Е, используя скалярное произведение векторов и
:
cos β = = 0 => β = 90° => C1E – искомое расстояние.
4) С1Е = = 2.
Вывод: знание различных подходов к решению стереометрических задач позволяет выбрать предпочтительный для любого учащегося способ, т.е. тот, которым ученик владеет уверенно, помогает избежать ошибок, приводит к успешному решению задачи и получению хорошего балла на экзамене. Координатный метод имеет преимущество перед другими способами тем, что требует меньше стереометрических соображений и видения, а основывается на применении формул, у которых много планиметрических и алгебраических аналогий, более привычных для учащихся.
Форма проведения урока – сочетание объяснения учителя с фронтальной коллективной работой учащихся.
На экране с помощью видеопроектора демонстрируются рассматриваемые многогранники, что позволяет сравнивать различные способы решения.
Домашнее задание: решить задачу 3 другим способом, например, с помощью теоремы о трех перпендикулярах.
1. Ершова А.П., Голобородько В.В. Самостоятельные и контрольные работы по геометрии для 11 класса.– М.: ИЛЕКСА, – 2010. – 208 с.
2. Геометрия, 10-11: учебник для общеобразовательных учреждений: базовый и профильный уровни / Л.С.Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2007. – 256 с.
3. ЕГЭ-2012. Математика: типовые экзаменационные варианты: 10 вариантов/ под ред. А.Л.Семенова, И.В.Ященко. – М.: Национальное образование, 2011. – 112 с. – (ЕГЭ-2012. ФИПИ – школе).
Источник