Физико механический способ получения порошка

Механические методы получения порошков

Классификация методов получения порошков

Металлический порошок – совокупность частиц металла, сплава или металлоподобного соединения размерами до одного миллиметра, находящихся во взаимном контакте и не связанных между собой.

Металлические порошки – основа порошковой металлургии, технология которой начинается с их получения. Метод производства и природа соответствующего металла, сплава или металлоподобного соединения определяют химические (содержание основного металла, примесей и загрязнений, пирофорность и токсичность), физические (форма, размер, удельная поверхность, истинная плотность и микротвердость частиц) и технологические (насыпная плотность, текучесть, уплотняемость, прессуемость и формуемость порошка) свойства получаемого металлического порошка.

Часто свойства порошка одного и того же металла существенно изменяются в зависимости от метода производства. Порошки, идентичные по химическому составу, могут иметь разные физические характеристики и резко различаться по технологическим свойствам, что приводит к значительным изменениям условий дальнейшего превращения порошка в готовые изделия и влияет на их свойства. Разнообразие требований, предъявляемых к порошкам в зависимости от области их применения, а также свойства (природа) самих металлов объясняют существование большого числа различных методов производства металлических порошков.

Общепринятым является условное деление этих методов на физикохимические и механические (табл. 1.1).

К физико-химическим методам относят технологические процессы производства порошков, связанные с глубокими физико-химическими превращениями исходного сырья. В результате получаемый порошок по химическому составу и структуре существенно отличается от исходного материала.

Механические методы обеспечивают превращение исходного материала в порошок без существенного изменения его химического состава. Чаще всего используют размол твердых материалов в мельницах различных конструкций и диспергирование расплавов. К механическим методам получения порошков относится и грануляция расплава (образование порошка происходит при сливании расплавленного металла в жидкость). Однако получаемые частицы имеют размеры больше одного миллиметра (до 2–5 мм). С помощью этого метода получают гранулы таких металлов, как олово, свинец, цинк, висмут и пр.

Совокупность методов их получения и превращения в изделия относится к другой области металлургического производства – гранульной металлургии. Выбор метода получения металлического порошка проводят на основе анализа требований, предъявляемых к конечной продукции.

В зависимости от размеров частиц порошки весьма условно подразделяют на следующие группы: нано- (размер частиц

Процесс деформации твердых тел заключается в том, что под действием внешней статической нагрузки в твердом теле начинается движение дислокаций. Движущиеся дислокации образуют дислокационные «стенки», столкновение которых приводит к появлению зародышей трещин. Образованию трещин способствуют и многочисленные дефекты на поверхности частиц твердого тела («нарушенный слой»), а также на его межзерновых границах. Действие динамических ударных нагрузок приводит к быстрому увеличению этих микротрещин. Однако при «снятии» внешней нагрузки трещины под действием сил межатомарного взаимодействия могут смыкаться («самозаживляться», релаксировать).

Разрушение твердого тела (его отдельной частицы) происходит только в том случае, когда внешние воздействия настолько велики, что трещины непрерывно «развиваются», распространяясь по всему сечению тела в одном или нескольких направлениях. В момент разрушения напряжения в деформирующемся теле превышают некоторое предельное значение («предел прочности материала»), упругая деформация сменяется деформацией разрушения и происходит уменьшение размеров (измельчение) исходных агрегатов.

При крупном дроблении вновь образующаяся поверхность невелика, так как получаемые частицы имеют сравнительно большие размеры. В связи с этим энергия, затрачиваемая на образование новой поверхности, намного меньше энергии деформации, а расход энергии на дробление приблизительно пропорционален объему разрушаемого тела.

При тонком измельчении вновь образующаяся поверхность очень велика. Поэтому расход энергии на измельчение приблизительно пропорционален вновь образующейся поверхности. Однако сама работа диспергирования всегда незначительна, так как почти вся энергия измельчающего устройства затрачивается на деформацию разрушаемого тела и на образование теплоты.

Поведение материала при измельчении является следствием двух соперничающих процессов – разрушения (дезинтеграции) и агрегатирования (интеграции) частиц. Проявление второго процесса связано с явлениями адгезии, физико-химических и физико-механических реакций, протекающих в процессе измельчения. Действие этих сил (помимо «заживления» трещин) приводит к агрегатированию и комкованию порошка. Поэтому в подавляющем большинстве случаев предельный размер частиц, которые удается получить при механическом измельчении материала, не превышает 0,1 мкм.

Читайте также:  Способы засолки сухих груздей горячим способом

Среди методов измельчения твердых материалов наибольшее распространение получили обработка металлов резанием, измельчение металла в шаровых, вихревых, молотковых и других мельницах, ультразвуковое диспергирование.

Предварительное измельчение крупных сырьевых материалов в щековых, валковых, конусных дробилках и молотковых мельницах.

Щековые, валковые и конусные дробилки применяются для предварительного измельчения крупных (до нескольких сантиметров) кусковых материалов с пределом прочности до 300–400 МПа. В дальнейшем предварительно измельченные в этих агрегатах материалы поступают на доизмельчение другими методами.

Щековые дробилки применяют для измельчения спекшейся губки, осадков с электродов, крупных кусков рудных концентратов и т.п. Размол материала в щековых дробилках до размера частиц 1–4 мм происходит за счет раздавливания кусков между неподвижной и подвижной щеками установки. Рабочее пространство между щеками называют «пастью» дробилки.

Измельчение материала до крупности частиц 0,5–1 мм обеспечивают валковые дробилки, один или оба валка которых могут совершать возвратнопоступательное движение по направляющим вдоль оси опорной рамы. Валки вращаются навстречу друг другу от отдельных приводов с окружной скоростью

2–4 м/с, причем разность их скоростей обычно не превышает 2 %; при дроблении вязких материалов разность этих скоростей может доходить до 20 %. Эффективность работы валковых дробилок в большой степени зависит от условий подачи материала, особенно от непрерывности его поступления в щель между валками и равномерности распределения по их длине. Валки могут быть гладкими, рифлеными или зубчатыми.

В конусных дробилках измельчение материала осуществляется в кольцевой полости между рабочей частью поверхности конуса и соответствующей частью внутренней поверхности корпуса дробилки (в камере дробления). Конусные дробилки обеспечивают измельчение материала до крупности частиц 1–2 мм.

Молотковые дробилки в основном используются для измельчения губчатых материалов (спекшихся при восстановлении порошков, катодных осадков и пр.). Измельчение обрабатываемого материала в них осуществляется за счет удара молотков (бил), укрепленных шарнирно на валу, вращающемся в рабочей камере с достаточно высокой скоростью (около 1 500 об/мин).

Исходный кусковой материал загружают в приемный бункер установки (рис. 1), откуда он поступает в рабочую камеру мельницы, в нижней части которой имеется отверстие, закрытое сеткой; после размола частицы проваливаются через ситовое полотно в сборник порошка.

Рис. 1. Молотковая мельница: 1 – электродвигатель; 2 – муфта; 3 – губка; 4 – загрузочный бункер; 5 – загрузочный люк с защелкой; 6 – корпус мельницы; 7 – била; 8 – металлическая решетка с ситовым полотном; 9 – порошок

Размол губки в молотковой мельнице происходит в течение нескольких минут, и получаемый порошок мало наклепывается, что исключает необходимость его последующего отжига.

Более тонкое измельчение обеспечивают бесколосниковые молотковые мельницы, рабочим органом которых является ротор с шарнирно закрепленными на нем тонкими пластинчатыми молотками.

Источник

Производство металлических порошков

В настоящее время используют несколько способов производства металлических порошков, что позволяет варьировать их свойства, определяет качество и экономические показатели. Используемые способы можно разделить на две группы:

1) физико-механические способы получения порошков

2) химико-металлургические способы получения порошков.

Физико-механический способ изготовления порошков: превращение исходного материала в порошок происходит путём механического измельчения в твердом или жидком состоянии без изменения химического состава исходного материала.

К физико-механическим способам относят дробление, размол, распыление, грануляцию и обработку резанием измельчаемого материала. Наиболее целесообразно применять механическое дробление и размол для хрупких металлов и их сплавов, таких как кремний, сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием. Размол вязких пластичных металлов (медь, алюминий и др.) затруднен. В этом случае порошки получают резанием, грануляцией или распылением. В качестве сырья для производства порошков можно использовать отходы, образующиеся при обработке металлов (стружка, опилки, обрезка и др.).

При измельчении комбинируются различные виды воздействия на материал: статическое (сжатие) и динамическое (удар, срез, истирание). Сжатие и удар применяют для получения крупных частиц, а срез и истирание — при тонком измельчении. Для грубого размола используют щековые, валковые, конусные дробилки и бегуны, при этом получают частицы размером от 1 до 10 мм. Эта грубая фракция является исходным материалом для последующего тонкого измельчения, обеспечивающего производство металлических порошков. Исходным материалом для тонкого измельчения может быть и стружка, получаемая при точении, сверлении, фрезеровании и других операциях обработки резанием. При резании большинства материалов путем изменения режима обработки, угла резания и введения колебательных движений можно получать кусочки стружки размером 3-5 мм. Окончательный размол полученного материала проводится в шаровых, центробежных, вихревых и молотковых мельницах.

Читайте также:  Сахар с молоком приготовление способ

Распыление и грануляция жидких металлов являются наиболее простыми и дешевыми способами изготовления порошков металлов с температурой плавления Тпл до 1600 о С (алюминий, железо, сталь, медь, цинк, свинец, никель и др). Измельчение исходного материала происходит путем дробления струи расплава потоком газа или жидкости, либо механическим распылением, либо сливанием струи расплава в жидкую охлаждающую среду (например, в воду). Наиболее широко применяется способ распыления металлов. При этом размеры частиц получают от 1 до сотых долей миллиметра.

Химико-металлургический способ: металлический порошок получается в результате протекания определенных химических реакций, при этом изменяется химический состав или агрегатное состояние исходного материала.

Основными процессами при химико-металлургическом производстве порошков являются:

1) восстановление окислов;

2) электролиз металлов;

3) термическая диссоциация карбонильных соединений.

Восстановление окислов. Простейшая реакция восстановления:

МеА + Х = Ме + ХА ± Q,

где Ме – любой металл; А – неметаллическая составляющая (кислород, хлор, фтор, солевой остаток и др.) химического соединения восстанавливаемого металла; Х – восстановитель; Q – тепловой эффект реакции.

Железный порошок получают восстановлением окисленной руды или прокатной окалины. Железо в указанных материалах находится в виде окислов: Fe2O3, Fe3O4.

Порошок вольфрама получают из вольфрамового ангидрида, являющегося продуктом разложения вольфрамовой кислоты Н2WO4 в процессе прокаливания при 700-800 о С.

Этим же методом (восстановления) получают порошки молибдена, титана, циркония, тантала, ниобия, легированных сталей и сплавов.

Электролиз наиболее экономичен при производстве химически чистых порошков меди. Физическая сущность электролиза состоит в том, что при прохождении электрического тока водный раствор или расплав соли металла, выполняющий роль электролита, разлагается и металл осаждается на катоде.

Карбонильный процесс. Карбонилы – это соединения металлов с окисью углерода: Me(CO), обладающие невысокой температурой образования и разложения.Процесс получения порошков этим методом состоит из двух главных этапов:

1) получение карбонила из исходного соединения:

MeX + CO = X + Me(CO);

2) образование металлического порошка:

Для синтеза карбонилов используют металлсодержащее сырье – стружку, обрезки, металлическую губку и т.п. Карбонильные порошки содержат примеси углерода, азота, кислорода (массовая доля 1-3 %). Очистку порошка производят путем нагрева в сухом водороде или в вакууме до температуры 400-600 о С. Этим методом получают порошки железа, никеля, кобальта, хрома, молибдена, вольфрама.

Свойства порошков

Порошки характеризуются химическими, физическими и технологическими свойствами.

Химические свойства металлического порошка зависят от химического состава исходных материалов и метода получения порошка. Массовая доля основного металла в порошках составляет 98-99 %. При изготовлении изделий с особыми свойствами, например, магнитными, применяют более чистые порошки. Допускаемое количество примесей в порошке определяется их количеством в готовой продукции. Исключение сделано для окислов железа, меди, никеля, вольфрама и некоторых других металлов, которые при нагреве в присутствии восстановителя легко образуют активные атомы, улучшающие спекаемость порошков. Массовая доля таких окислов в порошке может составлять 1-10 %. В металлических порошках содержится значительное количество газов (кислород, водород, азот и др.), как адсорбированных на поверхности, так и попавших внутрь в процессе изготовления или при последующей обработке. С уменьшением частиц порошка увеличивается адсорбция газов этими частицами.

При восстановлении химических соединений часть газов-восстанови-телей и газообразных продуктов реакции не успевает выйти наружу и находится в растворенном состоянии, либо в виде пузырей.

Электролитические порошки содержат водород, выделяющийся на катоде одновременно с осаждением на нем металла. В карбонильных порошках присутствуют растворенные кислород, окись и двуокись углерода, а в распыленных порошках – газы, механически захваченные внутрь частиц. Большое количество газов увеличивает хрупкость порошков и затрудняет прессование. Интенсивное выделение газов из спрессованной заготовки при спекании может привести к растрескиванию изделий. Поэтому перед прессованием или в его процессе применяют вакуумирование порошка, обеспечивающее удаление значительного количества газов.

Читайте также:  Способ завязывать длинный шарф

При работе с порошками учитывают их токсичность и пирофорность. Практически все порошки оказывают вредное воздействие на организм человека. Пирофорность, т.е. способность к самовозгоранию при соприкосновении с воздухом, может привести к воспламенению порошка и даже взрыву. Поэтому при работе с порошками строго соблюдают специальные меры безопасности.

Физические свойства частиц характеризуются формой, размерами и гранулометрическим составом, удельной поверхностью, плотностью и микротвердостью.

Форма частиц в зависимости от метода изготовления порошка получаются: сферическая (при карбонильном способе, распылении), губчатая (при восстановлении), осколочная (при измельчении в шаровых мельницах), тарельчатая (при вихревом измельчении), дендритная (при электролизе) и каплевидная (при распылении).

Форма частиц может несколько изменяться при последующей обработке порошка (размол, отжиг, грануляция). Контроль формы частиц выполняют на микроскопе.

Форма частиц влияет на плотность, прочность и однородность прессованного изделия.

Размер частиц и их гранулометрический состав. Значительная часть порошков представляет собой смесь частиц размером от долей микрометра до десятых долей миллиметра. Самый широкий диапазон размеров частиц имеется у порошков, полученных восстановлением и электролизом. Количественное соотношение объемов частиц различных размеров к общему объему порошка называют гранулометрическим составом.

Удельная поверхность– это сумма наружных поверхностей всех частиц, имеющихся в единице объема или массы порошка.

Для металлических порошков характерна величина удельной поверхности от 0,01 до 1,00 м 2 /г (у отдельных порошков: 4 м 2 /г у вольфрама, 20 м 2 /г у карбонильного никеля). Удельная поверхность порошка зависит от метода его получения и значительно влияет на прессование и спекание.

Действительная плотность порошковой частицы, носящая название пикнометрической, в значительной мере зависит от наличия примесей, закрытых пор, дефектов кристаллической решетки и других причин и отличается от теоретической. Плотность определяют на приборе – пикнометре, представляющем собой колбочку определенного объема и заполняемую сначала на 2/3 объема порошком и после взвешивания дозаполняемую жидкостью, смачивающей порошок и химически инертной к нему. Затем снова взвешивают порошок с жидкостью. По результатам взвешиваний находят массу порошка в жидкости и занимаемый им объем. Деление массы на объем позволяет вычислить пикнометрическую плотность порошка. Наибольшее отклонение плотности порошковых частиц от теоретической плотности наблюдают у восстановленных порошков.

Микротвердость порошковой частицы характеризует ее способность к деформированию. Микротвердость в значительной степени зависит от содержания примесей в порошковой частице и дефектов кристаллической решетки. Для измерения микротвердости в шлифованную поверхность частицы вдавливают алмазную пирамиду с углом при вершине 136° под действием нагрузки порядка 2 Н. Измерение выполняют на приборах для измерения микротвердости ПМТ-2 и ПМТ-З.

Технологические свойства порошка: насыпная плотность, текучесть, прессуемость и формуемость.

Насыпная плотность – масса единицы объема порошка при свободном заполнении объема.

Текучесть порошка – скорость заполнения единицы объема. Определяется массой порошка, высыпавшегося через отверстие заданного диаметра в единицу времени.

От текучести порошка зависит скорость заполнения прессформы и производительность прессования. Текучесть обычно уменьшается с увеличением удельной поверхности и шероховатости частичек порошка вследствие усложнения их формы. Последнее обстоятельство затрудняет относительное перемещение частиц. Влажность также значительно уменьшает текучесть порошка.

Прессуемость– свойство порошка приобретать при прессовании определенную плотность в зависимости от давления.

Прессуемость в основном зависит от пластичности частиц порошка. Количественно прессуемость определяется плотностью спрессованного брикета.

Формуемость– свойство порошка сохранять заданную форму, полученную после уплотнения при минимальном давлении.

Формуемость определяется формой и состоянием поверхности частиц. Формуемость оценивают качественно, по внешнему виду спрессованного брикета, или количественно — величиной давления, при котором получают неосыпающийся, прочный брикет.

Чем выше насыпная масса порошка, тем хуже, в большинстве случаев, формуемость и лучше прессуемость.

Источник

Оцените статью
Разные способы