Методы борьбы с обледенением ЛЭП
Методы борьбы с обледенением ЛЭП
Научный руководитель – д. т.н., профессор
Несмотря на многолетние усилия энергетиков и ученых, гололедные аварии в электрических сетях многих энергосистем по-прежнему вызывают наиболее тяжелые последствия и периодически дезорганизуют электроснабжение регионов страны.
Борьба с обледенением проводов ЛЭП осуществляется 3 методами:
1 –механический; 2 – физико-химический; 3 – электромеханический.
1) Механический способ
Механический способ заключается в применении специальных приспособлений, которыми производится сбивание льда с проводов. Самый простой способ механического удаления гололеда – сбивание при помощи длинных шестов. Обивка осуществляется боковыми ударами, вызывающие волнообразное колебание провода. Но этот способ требует доступа к ЛЭП, что нарушает нормальную работу участка. К тому же механическое воздействие не препятствует обледенению, а устраняет его.
Удаление гололеда с проводов шестами практически неосуществимо без большого количества рабочих. Этот метод требует много времени и применяется только на коротких участках линий, из-за чего в большинстве случаев признается нецелесообразным. Поэтому в настоящее время наиболее распространенным способом борьбы с гололедом на проводах ЛЭП является плавка гололеда переменным или постоянным током большой величины в течение продолжительного периода времени (около100 минут и более). При этом расходуется значительное количество энергии и требуется отключение линии от потребителей на длительный срок.
2) Электротермический способ
Электротермический способы удаления льда заключаются в нагреве проводов электрическим током, обеспечивающим предотвращение образования льда – профилактический подогрев или его плавку.
Профилактический подогрев проводов заключается в искусственном повышении тока в сети ЛЭП до такой величины, при которой провода нагреваются до температуры выше 0°С. При такой температуре гололед на проводах не откладывается. Профилактический подогрев необходимо начинать до образования гололеда. При профилактическом подогреве следует применять такие схемы питания, которые не требуют отключения потребителей.
Плавка гололеда на проводах осуществляется при уже образовавшемся гололеде путем искусственного повышения тока сети ЛЭП. Провода нагревают постоянным или переменным током частотой 50 Гц до температуры 100-130°С. Сделать это проще, замкнув накоротко два провода, при этом от сети приходится отключать всех потребителей.
Плавка гололеда переменным током применяется только на линиях с напряжением ниже 220 кВ с проводами сечением меньше, чем 240 мм2. Для ВЛ напряжением 220 кВ и выше с проводами сечений 240 мм2 и более плавка гололеда переменным током требует значительно больших мощностей источника питания.
Преимущество этого метода, это то что он снижает энергозатраты. Однако к недостаткам такого метода можно отнести следующее: необходимость постоянного подогрева проводов для предотвращения гололедообразования, высокая стоимость источников высокочастотного тока необходимой мощности.
3) Физико-химический метод
Этот метод заключается в нанесении на провода растворов специальных веществ, которые замерзают при температурах значительно более низких, чем вода. Метод предполагает получение покрытий с низкой адгезией к водным средам, снегу и льду. Одним из наиболее перспективных методов снижения адгезии является создание супергидрофобных покрытий.
Рисунок 4. Испытание супергидрофобного покрытия
Физико-химический способ в отличие от других предотвращает появления обледенения проводов. Полученные результаты позволяют говорить о новом физико-химическом методе в борьбе с обледенением проводов ЛЭП, эффективность которого существенно превышает возможности традиционных методов. Также этот метод не требует каких либо больших экономических затрат. Поэтому он является более перспективным. Единственным недостатком физико-химического метода является то, что срок действия таких жидкостей недолог, а регулярно наносить их на сотни и тысячи километров проводов нереально.
4) Замена проводов.
Метод заключается в том, чтобы не изобретать никаких второстепенных приборов для очистки проводов ото льда, а создать новые высокотехнологичные провода. Эти провода должны выполнять следующие требования:
— увеличить пропускную способность существующих линии;
— снизить механические нагрузки, прикладываемые к опорам ЛЭП, из-за пляски проводов;
— повышение коррозионной стойкости проводов и тросов;
— снижение риска обрыва провода при частичном повреждении нескольких внешних проволок из-за внешних воздействий, в том числе в результате удара молнии;
— улучшение механических свойств проводов при налипании снега или образовании льда
Для этого, внешние слои провода нужно выполнять из таких проводников которые будут плотно прилегать друг к другу.
Таким образом, за счет более плотной скрутки проводников и более гладкой внешней поверхности возможно использование более тонких и более легких проводов. Это, в свою очередь приводит к снижению электрических потерь в проводах на 10 – 15 %, в том числе потери на корону, и повышению механической прочности конструкции. Также, благодаря плотной скрутке практически исключается проникновение во внутренние слои воды и загрязнений, следовательно снижается коррозия внутренних слоев провода.
Из-за неэффективности механического и физико-химического метода на больших расстояниях, то об экономической стороне, говорить не будем.
В данный момент, образовавшийся гололёд на проводах очищают подогревом. Это не является самым дешевым способом, так как этот способ требует мощных и дорогих источников питания. Таким образом, плавка гололёда током — довольно неудобное, сложное, опасное и дорогостоящее мероприятие. Кроме того, очищенные провода при сохранившихся климатических условиях вновь обрастают льдом, который требуется плавить снова и снова.
Следует отметить, что плавка гололеда должна проводиться в районах интенсивного гололедообразования с частой пляской проводов. В других случаях применение плавки гололеда должно обосновываться технико-экономическими расчетами.
Срок эксплуатации проводов составляет 45 лет. Нужно переходить на новые высокотехнологичные провода. Зарубежные провода стоят очень дорого, стоимость в 10 раз превышает стоимость проводов АС. Предлагается разработать отечественные высокотехнологичные провода и начать заменять старые на новые.
Список используемой литературы
1. Способ удаления обледенения с проводов линий электропередач / , , : пат. 2442256 C1 Росс. Федерация, МПК H 02 G 7/16.; № 000/07 ; заявл. 29.10.2010 ; опубл. 10.02.2012, Бюл. № 4. 4с.: ил.
2. , Емельянов борьбы с обледенением ЛЭП: перспективы и преимущества новых супергидрофобных покрытий. //Журнал ЭЛЕКТРО № 6/2011. http://www. ess. ru/.
3. Дьяков и ликвидация гололедных аварий в электрических сетях. Пятигорск: Изд-во РП «Южэнерготехнадзор», 2000. 284 с.
4. Абжанов P. C. Исследование осаждения аэрозолей применительно к процессу гололедообразования на проводам ЛЭП / Дис. канд. техн. наук Алма — Ата,1973.
5. , К вопросу о борьбе с гололедным образованием на проводах линий электропередач // Научн. Тр. ЧИМЗСХ – Челябинск, 1973, вып.83, с.34-36.
6. , , АВТОМАТИЧЕСКАЯ СИСТЕМА УДАЛЕНИЯ ЛЬДА С ПРОВОДОВ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ
Источник
Привет студент
Противообледенительные системы самолета
Образование во время полета на поверхности различных частей самолета ледяных наростов представляет большую опасность. Обледенение уменьшает подъемную силу самолета и увеличивает его лобовое сопротивление, мешает работе органов управления, ухудшает пилотам видимость, увеличивает вибрацию и нагрузку отдельных элементов планера. Вызывая увеличение потребной для полета мощности, обледенение приводит к снижению располагаемой мощности вследствие уменьшения проходного сечения воздухозаборников двигателей и значительных потерь скоростного напора воздуха, поступающего в двигатель.
Обледенение воздушного винта вызывает резкое уменьшение его коэффициента полезного действия. Вместе с тем нарушается весовая и аэродинамическая балансировка винта, приводящая к тряске двигателей. Тряска вызывает дополнительные динамические напряжения в конструкции самолета, а также неприятные физиологические воздействия на экипаж и пассажиров. Отрывающиеся от лопастей куски льда могут повредить обшивку фюзеляжа и крыла.
Поэтому эффективная защита самолета от обледенения является одной из важнейших задач и в настоящее время противообледенительные устройства на самолете являются обязательными.
Существуют два основных метода борьбы с обледенением — пассивный и активный.
Пассивный метод предусматривает вывод самолета из зоны обледенения. Вполне очевидно, что пассивный метод не может удовлетворить требований безопасности и регулярности полетов. Ак
тивные методы борьбы с обледенением по характеру воздействия можно разделить на механические, химические и термические.
Механические методы зашиты основаны главным образом на применении надувающихся резиновых протекторов, которые монтируются на передней кромке крыла и хвостового оперения. Внутри протекторы имеют продольные камеры, куда попеременно поступает сжатый воздух. Противообледенительное устройство включается в действие после образования льда на передней кромке. Вначале надувается центральный протектор и ломает лед, затем надуваются два остальных протектора и надломленный лед отрывается и сносится воздушным потоком.
Химический метод основан на применении различных веществ в виде жидкости или пасты, имеющих температуру замерзания ниже 0° С и способных в разных пропорциях с водой образовывать смесь, которая замерзает лишь при температуре значительно ниже 0° С.
Защищаемая часть самолета покрывается каким-либо пористым материалом, например специально обработанной кожей, металлокерамическим листом или прутком. Через поры этих элементов подается жидкость, которая растворяет лед. В некоторых случаях защищаемая поверхность обливается антиобледенительной жидкостью.
В результате сцепление между льдом и поверхностью профиля уменьшается и отложившийся лед сдувается воздушным потоком. Этот метод применяется как для устранения, так и для предупреждения обледенения. Жидкостью, применяемой в таких противообледеннтельных устройствах, может быть спирт, спирто-глицериновые смеси и др.
Химические методы борьбы с обледенением нашли широкое применение в противообледенительных устройствах стекол фонаря кабины пилотов и воздушных винтов.
Термические системы могут применяться как для предупреждения, так и для устранения обледенения. Работа термических противообледенительных устройств основана на нагреве защищаемой поверхности самолета до температуры, исключающей возможность ее обледенения.
В зависимости от способа защиты поверхностей самолета различают электротермические и воздушно-тепловые противообледенительные системы. Во-первых, в качестве источника тепла используют электричество, во-вторых — теплый воздух, воздух, смешанный с отработавшими газами, или одни отработавшие газы. Электротермический способ защиты от обледенения позволяет подавать тепло в защищаемой поверхности с перерывами. При этом методе допускается образование небольшого количества льда на поверхности, после чего к этой поверхности подается тепло, лед подтаивает и сдувается воздушным потоком. После удаления льда обогрев прекращается, температура понижается и лед образуется вновь; этот процесс повторяется через определенный промежуток времени.
В этом случае стекание воды назад можно совершенно исключить, что позволяет ограничить площадь обогрева зоной оседания воды. При цикличном обогреве расход энергии на обогрев в несколько раз меньше, чем при обогреве непрерывного действия.
Защищаемые от обледенения поверхности обычно разбивают на отдельные секции. Секции имеют симметричное расположение на левой и правой частях крыла и оперения. Последовательное и симметричное подключение нагревательных элементов секций дает значительную экономию потребляемой противообледенительными устройствами электрической энергии, так как вместо одновременного обогрева всех секций обогревается в каждый данный момент времени лишь часть. На крыле и оперении, кроме периодически включаемых секций, могут быть непрерывно обогреваемые в условиях обледенения участки, такие, как места стыка секций и передние кромки, с которых лед не может быть сброшен аэродинамическими силами.
Противообледенительный носок крыла и оперения представляет собой многослойную конструкцию, спрессованную на синтетическом клее, состоящую из внешней и внутренней обшивки, между которыми размещены два стеклотканевых слоя электроизоляции и нагревательный элемент. Каждый нагревательный элемент состоит из двух латунных контактных шин (плюсовой и минусовой), к которым подпаяна сетка из константановой проволоки диаметром 0,12— 0,15 мм. Конструкция нагревательных элементов лопастей винтов (рис. 138) и обтекателей втулки винтов подобна конструкции нагревательных элементов крыла. Обогреваемый участок лопасти винта обычно составляет 15—20% хорды и 50—75% длины лопасти. Защита от обледенения концов лопастей не нужна вследствие нагрева их от трения воздуха и больших центробежных сил, срывающих образовывающиеся частицы льда.
Надежную защиту от обледенения обеспечивают системы, использующие горячий газ или воздух.
С внедрением на самолетах газотурбинных двигателей получен мощный источник тепла, используемого в противообледенительной системе (рис. 139).
Источниками тепла являются воздух, отводимый от компрессоров двигателя, или отработавшие газы, отбираемые из входа в турбину или из реактивного сопла; кроме того, возможен подогрев воздуха в теплообменнике, установленном вокруг реактивного сопла. Каждый из вышерассмотренных способов обеспечения энергии может оказать отрицательное влияние на летные характеристики самолета вследствие уменьшения тяги, увеличения расхода топлива или увеличения веса. Анализ ухудшения летных данных самолета в результате применения той или иной системы получения тепловой энергии показал, что система отвода воздуха от компрессора двигателя является более приемлемой. К достоинствам такой системы относятся также простота конструкции и использование чистого воздуха без примесей продуктов сгорания. Чистота воздуха имеет важное значение с точки зрения избежания коррозии трубопроводов и конструкции самолета исключает, отравление пассажиров и экипажа.
Используемая литература: «Основы авиации» авторы: Г.А. Никитин, Е.А. Баканов
Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ
Источник