Это различные способы представления данных

Это различные способы представления данных

Виды информации. Представление информации.

По способу восприятия информации человеком можно выделить визуальную (зрительную), аудиальную (звуковую), обонятельную (запахи) вкусовую, тактильную (осязательную), вестибулярную и мышечную информацию (рис.3).

Визуальную информацию люди воспринимают с помощью глаз. Человек может увидеть объект или явление, букву или цифру, картину или фильм, схему или карту, жест или танец. Аудиальную информацию люди воспринимают с помощью ушей. Человек может услышать произвольные звуки, шум, музыку, пение и речь. Обонятельную информацию, или запахи, человек воспринимает с помощью носа. Запах можно охарактеризовать как терпкий или пряный, приятный или неприятный, тяжелый или легкий. Вкусовую информацию человек воспринимает с помощью языка. Вкус может быть горький или сладкий, кислый или соленый. Тактильную информацию человек воспринимает кожей. Прикасаясь к предмету, можно определить его температуру (холодный или горячий) и вид поверхности (гладкая или шероховатая, мокрая или сухая). Вестибулярную информацию человек воспринимает с помощью вестибулярного аппарата, который отслеживает положение тела человека в трехмерном пространстве. Летя в самолете и не видя горизонта, человек может определить, куда и как он перемещается: вверх или вниз, вправо или влево, ускоренно или замедленно. Мышечную информацию люди воспринимают с помощью мышц. Закрыв глаза, человек не пронесет ложку с супом мимо своего рта, может дотронуться указательным пальцем до своего носа, сравнить массу гирь, одинаковых на ощупь.

Воспринимать информацию могут не только люди, но и животные, и растения. Однако в отличие от людей, восприятие информации животными и растениями имеет свои особенности. Например, слоны способны воспринимать звуки, которые не слышит человек, у собак лучше всего развито обоняние, у летучих мышей – слух, а растения могут получать информацию с помощью корней и листьев. Несмотря на эти особенности, в живой природе, так же как и в мире людей, информация играет важную роль в обеспечении жизненных процессов. Воспринимаемую с помощью органов чувств информацию человек стремится выразить так, чтобы она была понятна другим. Одну и ту же информацию, в зависимости от цели деятельности, можно выразить разными способами и представить в разной форме.

По форме представления принято выделять числовую, текстовую, графическую, звуковую и комбинированную информацию (рис. 4).

Рис. 4. Виды информации по форме представления

Например, если человек хочет выучить слова песни наизусть, то, скорее всего, он запишет стихи с помощью букв. В этом случае информация будет представлена в текстовой форме. Запомнить мелодию песни позволит прослушивание этой песни в исполнении певца или музыканта. В этом случае информация будет представлена в звуковой форме. Образ, навеянный стихами или мелодией, можно изобразить в графической форме с помощью рисунка.

Для того чтобы выяснить количество поклонников исполнителя песни, необходимо их подсчитать и результат представить в числовой форме. Каждая из этих форм представления информации имеет свои особенности. Графическая информация наиболее доступна, так как срезу передает визуальный образ.

С помощью текстовой и звуковой информации можно представить исчерпывающие разъяснения. Числовая информация дает возможность проводить различные сравнения и вычисления. Поэтому чаще всего информацию представляют в комбинированной форме. Частным случаем комбинированной информации является мультимедийная информация , когда текстовая и числовая информация сочетается со звуковой и графической информацией, с видеоизображением .

Для представления информации человек использует различные знаки. Один и тот же знак может иметь разный смысл. Если человек наделил знак смыслом, то этот знак называют символом

Например, нарисованный овал может означать или букву «О», или цифру ноль, или химический элемент кислород, или геометрическую фигуру. В нашем примере нарисованный овал – это знак. Буква, цифра и обозначение химического элемента являются символами.

Для того чтобы понимать смысл информации, представленной с помощью символов, человеку необходимо знать не только символы, но и правила составления сообщений из этих символов. Говоря другими словами, человеку необходимо знать язык. Язык может быть разговорным, языком рисунков, мимики и жестов, языком науки и искусства.

Выделяют естественные (разговорные) и искусственные языки (рис. 5).

Естественные языки исторически сложились в процессе развития человеческой цивилизации. К естественным языкам относятся русский, английский, китайский и многие другие языки. В мире насчитывается более 10 тыс. разных языков, диалектов и наречий.

Искусственные языки специально созданы для профессионального применения в какой-либо области человеческой деятельности. Некоторые искусственные языки складывались в течение длительного исторического периода, например язык математических обозначений. С этой точки зрения они мало отличаются от естественных языков. Примерами искусственных языков являются эсперанто, языки программирования, язык математики, язык химии, язык логики, язык флажков на флоте, язык дорожных знаков.

Некоторые естественные языки имеют искусственно созданные алфавиты. Так, например, авторами русского языка являются Кирилл и Мефодий.

Представление информации с помощью определенного языка всегда связано с алфавитом. Алфавит содержит конечный набор символов, из которых можно составить как угодно много слов. Все символы в алфавите упорядочены.

Количество символов в алфавите называют мощность алфавита.

Читайте также:  Лечение седалищного нерва домашним способом

Представленную информацию можно преобразовать из одной последовательности знаков в другую, не задумываясь о смысле сообщения. Такой процесс преобразования сообщения называется кодированием. Обратный процессом кодированию является процесс декодирования. Для того чтобы выполнить кодирование или декодирование, необходимо знать правила перевода одних знаков в другие знаки. Говоря другими словами, надо знать код или шифр.

По мере развития средств появились различные способы кодирования информации. Например, кодирование с помощью азбуки (кода) Морзе (длительный сигнал – тире, короткий сигнал – точка, нет сигнала – пауза), с помощью двоичного кода (нет сигнала – 0, есть сигнал – 1). Кодирование используется для представления информации в такой форме, которая будет наиболее удобна для работы человека или технического устройства. Например, человеку удобно и привычно работать с десятичными числами, а компьютер настроен на работу с двоичными числами. Поэтому десятичное число, введенное с помощью клавиатуры компьютера, кодируется в двоичное число. При выводе числа на экран монитора происходит декодирование из двоичного числа в десятичное число. Кодирование информации необходимо не только для ее рационального представления, но и для ее эффективной защиты. Не случайно другим примером кода является пин-код сотового телефона или банковской карточки, а также код, используемый в качестве ключа от цифрового замка дорожной сумки.

Источник

Представление и считывание данных (схемы, карты, таблицы, графики и формулы)

Теория к заданию 15 из ЕГЭ по информатике

Моделирование и компьютерный эксперимент

Общая структура деятельности по созданию компьютерных моделей

Объект (лат. objectum — предмет) — это некоторая часть окружающего мира, рассматриваемая как единое целое. Все, что человек изучает, использует, производит, является объектом. Каждый объект имеет имя, что позволяет отличить один объект от другого (например, стол, атом, город Москва, ураган Катрин и т. п.). Конкретизировать объект можно с помощью параметров. Параметры — это признаки, которые характеризуют какое-либо свойство объекта. Они могут быть количественные (рост, вес, возраст, размер и т. п.) и качественные (форма, материал, цвет, запах, вкус и т. п.). Очень часто можно наблюдать смену состояний объекта в течение времени и, как результат, изменение параметров объекта. Говорят, что происходит некоторый процесс. Переход объекта из одного состояния в другое происходит при воздействии на него других объектов.

Модель (лат. modulus — мера; франц. modele — образец) — искусственно созданный объект в виде схем, чертежей, логико-математических знаковых формул, компьютерной программы, физической конструкции, который, будучи аналогичен (подобен, сходен) исследуемому объекту (явлению, процессу, устройству, сооружению, механизму, конструкции), отображает и воспроизводит в более простом, уменьшенном виде структуру, свойства, взаимосвязи и отношения между элементами исследуемого объекта, непосредственное изучение которого связано с какими-либо трудностями, большими затратами средств и энергии или просто недоступно, и тем самым облегчает процесс изучения информации об интересующем нас предмете.

Исследуемый объект по отношению к модели является оригиналом (образцом, прототипом). Модели могут создаваться как из однородного с оригиналом материала (например, макет деревянного сооружения можно сделать тоже из дерева), так и из материала, совершенно отличного от материала оригинала (например, бумажная модель самолета). Кроме того, модели могут быть нематериальными, или абстрактными (например, математическая модель самолета, компьютерная модель электрической сети).

Моделирование — это исследование каких-либо объектов (конкретных или абстрактных) на моделях. Объектом моделирования может быть объект, явление или процесс.

При создании модели стараются отразить наиболее существенные свойства объекта, а несущественные свойства отбрасываются. Например, на глобус наносятся океаны и моря, материки и крупные острова, а маленькие озера и островки на него не попадают: в масштабе глобуса они будут просто не видны.

Человек постоянно занимается моделированием, поскольку модели, упрощая объекты и явления, помогают человеку понять реальный мир. Более того, любая наука начинается с разработки простых и адекватных моделей.

Кроме материальных (предметных) моделей (игрушки, глобуса, макета дома. ), существуют нематериальные — абстрактные модели: описания, формулы, изображения, схемы, чертежи, графики и т. д. С помощью математических формул описываются, например, арифметические операции, соотношения геометрии, законы движения и взаимодействия тел (S = Vt, F = mа) и многое другое. Химические формулы помогают представить молекулярный состав химических веществ и реакции, в которые они вступают. Пользуясь таблицами, графиками, диаграммами можно отображать различные закономерности и зависимости реального мира.

Все абстрактные модели не имеют физического воплощения. Абстрактные модели, которые можно представить с помощью набора знаков (геометрических фигур, символов, фрагментов текста), — это знаковые модели. Любую знаковую модель можно изобразить на бумаге. Чтобы построить знаковую модель, нужно представлять значение знаков и знать правила их преобразования. Абстрактная модель, прежде чем оформиться в виде знаковой модели, сначала рождается в голове человека. Она может передаваться человека к человеку в устной форме. В таких случаях модель еще не является знаковым образом, поскольку не имеет вида чертежа, формулы, текста. Модель в голове человека существует в форме мысленных представлений (мысленная модель). Модели, полученные в результате умозаключений, называются вербальными (лат. verbalis — устный). Вербальными называются также модели, изложенные в разговорной форме. Таким образом, все абстрактные модели можно разделить на знаковые и вербальные.

Представленная классификация моделей самая простая. Она основана на делении моделей по способу представления. Возможны и другие классификации, — например, по предметному признаку: физические, химические модели, модели строительных конструкций, различных механизмов и т. д.

Если модель формулируется таким образом, что ее можно обработать на компьютере, то она называется компьютерной. Компьютерная модель — это модель, реализуемая с помощью программных средств.

Читайте также:  Строение свойства металлов способы получения металлов

Компьютерные модели обычно различают по программному обеспечению, которое применяется при создании и работе с моделью. Для обработки компьютерных моделей используются существующие программные приложения (математические пакеты, электронные таблицы, графические редакторы и т. д.) либо разрабатываются оригинальные программы с помощью языков программирования (Ваsic, Раsсаl, Dеlpi, С++ и др.).

Моделирование с использованием компьютера предоставляет неизмеримо больше возможностей, чем простое моделирование с помощью реальных предметов или материалов. Например, применение компьютера для раскроя (листового металла, ткани и пр.) позволяет снизить до минимума потери материала. Поиск оптимального решения этой задачи с помощью шаблонов потребует значительно больше времени и средств.

Этапы создания модели

Моделирование — творческий процесс, и разложить его на какие-либо этапы и шаги очень сложно. Многие модели и теории рождаются как соединение опыта и интуиции ученого или специалиста. Однако решение большинства конкретных задач все же можно представить поэтапно.

Моделирование, в том числе компьютерное, начинается с постановки задачи. На этом этапе формулируется задача и требования, которые предъявляются к решению. Постановка задачи заключается, прежде всего, в ее описании. Задача может быть описана на обыденном языке — например, в форме вопроса «что будет, если. ?» или «как сделать, чтобы. ?». Математическую задачу описывают с помощью формул и знаков, а инженерная, экономическая задача может быть описана с помощью различных схем, графиков.

При постановке задачи нужно отразить (или хотя бы понять) цель или мотив создания модели. Одни модели создаются, чтобы разобраться в устройстве или составе того или иного объекта. Другие модели направлены на изучение возможностей управления объектом. Третьи модели ставят целью предсказать поведение объекта (задачи прогнозирования). На этапе постановки задачи полезным оказывается предварительный анализ объекта. Разложение объекта на составляющие, выяснение связей между ними позволяет уточнить постановку задачи.

За постановкой задачи следует этап разработки модели. На этом этапе необходимо выделить существенные факторы, т. е. выяснить основные свойства описываемого объекта, правильно определить связи между ними и с другими объектами окружающего мира. Анализ информации, по возможности, должен быть разносторонним и полным. Те факторы, которые оказались несущественными, могут быть отброшены.

После того как сформулированы основные свойства разрабатываемой модели, определены исходные данные и желаемый результат, наступает очень важный момент — составление алгоритма решения задачи.

При разработке компьютерной модели весьма существенным будет выбор программного обеспечения, с помощью которого выполняется моделирование. Программное обеспечение должно позволять эффективно решать задачи, подобные той, которая рассматривается. Например, для создания рисунка на компьютере нужно выбрать тот или иной графический редактор (какой именно — зависит от требуемого формата файла и приемов, которые необходимо применять при рисовании). Чтобы решить систему уравнений, нужно воспользоваться языками программирования Basic, Pascal или каким-либо другим или же использовать для решения математические пакеты. Программная среда должна соответствовать поставленной задаче — только в этом случае задача может быть успешно решена. Выбор программного обеспечения и составление алгоритма — это взаимосвязанные действия. Возможно, что для решения поставленной задачи придется разработать собственную компьютерную программу.

Когда модель разработана, можно приступать к наиболее интересному этапу — компьютерным экспериментам. В ходе этих экспериментов проверяется работа модели, а также выполняются необходимые расчеты или преобразования, ради которых и создавалась модель.

Проверка модели осуществляется обычно с помощью ее тестирования. При тестировании проверяется разработанный алгоритм функционирования модели. В качестве теста задаются исходные данные, для которых заранее известен ответ. Если ответ, полученный при тестировании, совпадает с известным ответом, а тест составлен правильно, то считается, что модель работает корректно. В противном случае нужно искать и устранять причины расхождений. Все эти действия называются отладкой модели.

После выполнения тестирования и отладки можно приступать непосредственно к моделированию. Технология моделирования может заключаться в расчете модели при различных наборах входных данных, различных параметрах.

Завершается компьютерное моделирование анализом результатов. Материалом для анализа являются результаты компьютерных экспериментов. Поэтому эксперименты должны быть проведены таким образом, чтобы получить достоверный результат. Анализ результатов может привести к необходимости уточнения модели, т. е. к повторному выполнению второго этапа и всех последующих этапов.

Этапы компьютерного моделирования можно представить в виде таблицы.

1. ПОСТАНОВКА ЗАДАЧИ Описание
Мотивация
Предварительный анализ

2. РАЗРАБОТКА МОДЕЛИ Выделение существенных факторов
Составление алгоритма
Выбор программного обеспечения
Программирование

3. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ Тестирование модели
Отладка модели
Расчет модели при различных входных данных

4. АНАЛИЗ РЕЗУЛЬТАТОВ

Представление и считывание данных в разных типах информационных моделей (схемы, карты, таблицы, графики и формулы)

Многообразие объектов предполагает использование огромного количества инструментов для реализации и описания этих моделей. Для исследования большинства объектов не обязательно создавать материальные модели. Если ясно представлять цель исследования, то часто достаточно иметь нужную информацию и представить ее в оптимальной форме. В этом случае речь идет о создании информационной модели. Информационные модели — это абстрактные модели, поскольку, как известно, информация — это нематериальная категория.

Информационная модель — это целенаправленно отобранная информация об объекте, представленная в некоторой форме.

Простейшими примерами информационных моделей являются различные загадки, в которых описываются свойства, по которым нужно угадать название объекта («Летом серый, зимой белый»; «Зимой и летом одним цветом»). К информационным моделям можно отнести тексты справочных изданий, энциклопедий.

Формы представления информационных моделей могут быть различными. Наиболее известны следующие формы:

  • в виде сигналов;
  • устная, словесная;
  • символьная (числа, текст, символы);
  • табличная;
  • схемы, карты;
  • графики.
Читайте также:  Самые простейшие способы заработка

Один и тот же объект, в зависимости от поставленной цели, можно представить несколькими информационными моделями, отличающимися набором параметров и способом их представления. Рассмотрим примеры анализа информации для модели, представленной в табличной форме.

Пример 1. Таблица стоимости перевозок между станциями A, B, C, D, E построена следующим образом: числа, стоящие в ячейках на пересечении строк и столбцов, означают стоимость проезда между соответствующими соседними станциями. Стоимость проезда по маршруту складывается из стоимостей проезда между соответствующими соседними станциями. Если на пересечении строки и столбца пусто, то станции не являются соседними. Выбрать таблицу, для которой выполняется условие: «Минимальная стоимость проезда из А в B не больше 6».

Решение. Прежде всего, нужно отметить, что данные в таблицах симметричны относительно главной диагонали, т. е. проезд из А в В стоит столько же, сколько и из В в А.

Рассмотрим первую таблицу. Выберем все возможные варианты проезда из А в В и соответственно подсчитаем стоимости: AC(3) + CB(4); AC(3) + CE(2) + EB(2)

Примечание. В скобках указана стоимость проезда.

Стоимость, как первого, так и второго варианта маршрута равна 7.

Аналогично поступим для второй таблицы: AC(3) + CB(4); AE(1) + EC(2) + CB(4).

Как и в случае с предыдущей таблицей, стоимость как первого, так и второго варианта маршрута равна 7.

Выписываем все варианты для третьей таблицы: AC(3) + CB(4); AC(3) + CE(2) + EB(1).

Стоимость последнего варианта маршрута равна 6.

Ответ: таблица номер 3 содержит маршрут из А в В, стоимость которого не превышает 6.

Пример 2. Для заданной информационной модели, записанной в форме таблицы, построить модель в виде схемы. В ячейках на пересечении строк и столбцов таблицы указана стоимость проезда между соседними станциями. Пустые ячейки означают, что станции не являются соседними.

Решение. Отметим точку A, она должна быть соединена с C и D. Отмечаем точки C и D и соединяем их с точкой А дугами; над каждой дугой указываем стоимость проезда. Точка С должна быть соединена, кроме А, с точками В и Е. Точка D является соседней только с А. Точка В должна быть соединена, кроме С, с точкой Е. В результате можно получить следующую схему:

Математические модели (графики, исследование функций)

Знаковые модели принято делить на математические и информационные.

Математическая модель — это знаковая модель, сформулированная на языке математики и логики. Это система математических соотношений — формул, уравнений, неравенств, графиков и т. д., отображающих связи различных параметров объекта, системы объектов, процесса или явления.

Над элементами математической модели можно выполнять определенные математические преобразования. Например, в модели нахождения наименьшего числа выполняются операции сравнения, а в модели вычисления корня уравнения — различные арифметические операции. С помощью математических моделей описываются решения различных инженерных задач, многие физические процессы (движение планет, автомобиля и т. п.); технологические процессы (сварка, плавление металла и т. п.). Графики, таблицы, диаграммы позволяют отображать различные закономерности и зависимости реального мира. Например, модель развития эпидемии можно описать как с помощью формул, так и с помощью графика. Полет снаряда, выпущенного из орудия, можно математически смоделировать с помощью известных формул движения, затем построить график движения снаряда — баллистическую кривую, которая отображает реальный полет снаряда. Математически изменяя параметры снаряда или характеристики движения, можно изучать, например, вопросы увеличения дальности или высоты полета и т. п.

Как известно, не все математические задачи можно решить аналитически, т. е. получить решение в виде формул. Значительно больше задач, которые решаются приближенно, с заданной точностью, т. е. с использованием численных методов. Реализация приближенных расчетов на компьютерах позволяет повысить точность и скорость расчетов.

В настоящее время расчеты для большинства математических моделей проводят на компьютерах, используя специальные прикладные программные комплексы, которые позволяют:

  • в несколько раз сократить время проведения исследований;
  • уменьшить количество участников эксперимента;
  • повысить точность и достоверность эксперимента, а следовательно, увеличить контроль;
  • за счет средств графической визуализации, например анимации, получить реальную «картинку»;
  • повысить качество и информативность эксперимента за счет увеличения числа контролируемых параметров и более точной обработки данных. На экране компьютера возможно, например, формирование целой системы приборов, которые будут отслеживать изменение параметров объекта.

Построение и использование информационных моделей реальных процессов (физических, химических, биологических, экономических)

Моделирование занимает центральное место в исследовании объекта. Компьютеры дают широкие возможности для постановки компьютерных экспериментов. Компьютерное моделирование позволяет воссоздать явления, которые в реальных условиях воспроизвести невозможно. Это, например, движение материков, эффекты землетрясений и наводнений, рождение сверхновых звезд, изменение направлений морских подводных течений и т. д. При изучении этих явлений на помощь приходят компьютеры и компьютерные программы, причем последние составляются квалифицированными программистами совместно с различными специалистами: физиками, географами, биологами, медиками и др.

Компьютерное моделирование используется также при описании и расчете экспериментов, которые выполнять в реальности не следует. Это, например, модели ядерного взрыва, пожара на предприятии, столкновения на железной дороге, военных действий и т. д. С помощью компьютерных моделей можно с достаточной точностью описать детали этих катастроф и спрогнозировать последствия.

Построение моделей позволяет осознанно принимать решения по усовершенствованию имеющихся объектов и созданию новых, изменению процессов управления ими. И, как следствие, наблюдается изменение окружающего нас мира.

Примеры информационных компьютерных моделей для различных отраслей знаний приведены в таблице.

Источник

Оцените статью
Разные способы