Элементарные способы передачи тепла

Сложный теплообмен. Теплоотдача и теплопередача

Элементарные способы передачи теплоты. (Виды процессов теплообмена)

Различают три элементарных способа передачи теплоты:

1. Теплопроводность (кондукция);

3. Тепловое излучение (радиационный теплообмен).

Теплопроводность (кондукция) – способ передачи теплоты за счет взаимодействия микрочастиц тела (атомов, молекул, ионов в электролитах и электронов в металлах) в переменном поле температур.

Теплопроводность имеет место в твердых, жидких и газообразных телах. В твердых телах теплопроводность является единственным способом передачи теплоты. В вакууме теплопроводность отсутствует.

Конвекция – способ передачи теплоты за счет перемещения макрообъемов среды из области с одной температурой в область с другой температурой. При этом текучая среда (флюид) с более высокой температурой перемещается в область более низких температур, а холодный флюид – в область с высокой температурой. В вакууме конвекция теплоты невозможна.

Тепловое излучение (радиационный теплообмен) – способ передачи теплоты за счет распространения электромагнитных волн в определенном диапазоне частот.

Замечания:

— все тела выше 0 К обладают собственным тепловым излучением, то есть энергию излучают все тела;

— для передачи теплоты излучением не требуется тело-посредник, т.е. лучистая энергия может передаваться и в вакууме.

В природе и в технических устройствах, как правило, все три способа передачи теплоты происходят одновременно. Такой теплообмен называется сложным теплообменом.

Например, конвекция теплоты всегда протекает совместно с теплопроводностью, так как макрообъемы текучей среды состоят из микрообъемов, и есть неравномерное по пространству температурное поле. Передача теплоты совместно теплопроводностью и конвекцией называется конвективным теплообменом.

Совместная передача теплоты излучением и теплопроводностью называется радиационно-кондуктивным теплообменом.

Совместная передача теплоты излучением и конвекцией называется радиационно-конвективным теплообменом.

В природе и технике наиболее часто встречаются следующие два варианта сложного теплообмена:

— теплоотдача – процесс теплообмена между непроницаемой твёрдой стенкой и окружающей текучей средой;

— теплопередача – передача теплоты от одной текучей среды к другой текучей среде через непроницаемую твёрдую стенку.

Теплоотдача. График температурного поля при теплоотдаче показан на рис. 3. Температура текучей среды изменяется в очень узкой области, которая называется тепловым пограничным слоем.

Рис. 1.3. Схема процесса теплоотдачи: Tw – температура стенки; Tf – температура текучей среды; δq – толщина теплового пограничного слоя.

Заметим, что в зависимости от соотношения температур стенки Tw и флюида Tf тепловой поток Q может нагревать стенку при условии или охлаждать ее, если .

Процесс теплоотдачи может быть осуществлен сочетанием следующих элементарных процессов теплообмена:

— конвективная теплоотдача (конвекция + теплопроводность = конвективный теплообмен) – имеет место при омывании твердых поверхностей различной формы текучей средой ( лученепрозрачной капельной жидкостью);

Читайте также:  Способ приема ацц 200 таблетки инструкция по применению

— лучистая или радиационная теплоотдача (тепловое излучение) – имеет место при радиационном теплообмене в вакууме или между стенкой и излучающим и поглощающим неподвижным газом;

— радиационно-конвективная теплоотдача (тепловое излучение + конвективный теплообмен) – наиболее часто встречающийся в практике расчетов случай сложного теплообмена;

— конвективная теплоотдача при фазовых превращениях теплоносителя (конвекция + теплопроводность + возможно излучение) – теплоотдача при конденсации и кипении, протекающая с выделением или поглощением теплоты фазового перехода.

Расчет теплоотдачи заключается в определении теплового потока, которым обмениваются стенка и текучая среда. В инженерных расчетах теплоотдачи используется, так называемый закон теплоотдачи – закон Ньютона (1701 г.):

,

где Q – тепловой поток, Вт; – коэффициент теплоотдачи, Вт/(м 2 ·К); Tf и Tw – температура текучей среды и стенки; F – площадь поверхности теплообмена.

Теплопередача. В курсе ТМО изучают расчет теплопередачи через стенки плоской, цилиндрической, сферической и произвольной формы. В нашем кратком курсе ограничимся расчетом теплопередачи через плоскую и цилиндрическую стенки. График температурного поля при теплопередаче через плоскую стенку показан на рис. 4.

Рис. 1.4. Схема процесса теплопередачи: Tf,1 и Tf,2 – температура горячего и холодного флюида (текучей среды); Tw,1 и Tw,1 – температура поверхностей плоской стенки; δ – толщина плоской стенки.

Итак, теплопередача включает в себя следующие процессы:

а) теплоотдачу от горячей текучей среды (горячего теплоносителя) к стенке;

б) теплопроводность внутри стенки;

в) теплоотдачу от стенки к холодной текучей среде (холодному теплоносителю).

Тепловой поток при теплопередаче, передаваемый от горячего флюида с температурой Tf,1 к холодному флюиду с температурой Tf,2 , рассчитывается по формуле (для плоской стенки):

,

где – коэффициент теплопередачи через плоскую стенку, Вт/(м 2 ·К); Rt – термическое сопротивление теплопроводности плоской стенки, (м 2 ·К)/Вт..

В заключение первого раздела курса можно сделать вывод о том, что для решения основной задачи расчета теплообмена – определения температурных полей и тепловых потоков при теплоотдаче и теплопередаче – необходимо уметь рассчитывать три элементарных способа передачи тепловой энергии.

Источник

Три элементарных вида теплообмена, их характеристики.

Согласно второму закону термодинамики, если в теле или в какой-либо термодинамической системе тел возникала разность температур, то из области с более высокой температурой в область с более низкой температурой будет передаваться тепловая энергия. В этом случае говорят, что между указанными областями возник теплообмен. Известные законы и зависимости термодинамики позволяют определить как количество тепловой энергии, передаваемой в результате теплообмена, так и температуру тел, участвующих в нем. Эти законы, кроме того, позволяют найти также скорость передачи тепловой энергии и время, за которое произойдет выравнивание температур. Указанные процессы исследует раздел теплотехники — теория теплообмена. Тела или области тел обмениваются между собой тепловой энергией тремя способами:Теплопроводность — способ теплообмена, основанный на передаче энергии теплового движения микрочастиц путем их соударений. Микрочастицы движутся со скоростями, пропорциональными их абсолютной температуре. В результате их столкновений происходит передача тепловой энергии в отдельно взятом теле из области с более высокой температурой в область с более низкой температурой. Передача тепловой энергии от одного тела к другому в вакууме осуществляется только при контакте тел. Итак, теплопроводность — это перенос тепловой энергии соударением микрочастиц. В металлах, например, этими частицами являются свободные электроны, в жидкостях и газах — молекулы.Конвекция— способ теплообмена, при котором передача тепловой энергии осуществляется путем переноса макроскопических тел из областей тела с высокой температурой в области с низкой температурой. Конвекция свойственна только жидкостям и газам. Перенос обусловлен градиентом давления в жидкости или газе, который вызван наличием либо сил тяжеcти (естественная конвекция), либо источников энергии, приводящих жидкость или газ в движение, например, насосов, вентиляторов и т. п. (вынужденная конвекция).Тепловое излучение — способ теплообмена, основанный на способности всех тел при определенных условиях излучать энергию в виде электромагнитных волн (фотонов) и частиц вещества. При этом излучающее тело теряет тепловую энергию и при этом охлаждается, а тело, которое поглощает излучение, нагревается.

Читайте также:  Как делится информация по способу восприятия

22. Теплопроводность. Дать характеристику этого вида теплообмена. Коэффициент теплопроводности, его физическая сущность.Теплопроводность — передача тепла путем непосредственного соприкосновения (контакта) частиц тепла с различной температурой. При теплопроводности температура внутри тела различна и непрерывна между соприкасающимися частицами тела. Мгновенное значение температуры во всех точках тела для какого-либо момента времени называется температурным полем данного тела. Температурное поле может быть переменным (нестационарным) и постоянным (стационарным) во времени и иметь различные значения температуры в трех, двух и одном измерениях пространства. В соответствии с этим температурное поле называется трех-, двух- и одномерным температурным полем. Температурное поле может быть изображено посредством изотермических поверхностей и линий, соединяющих точки тела с одинаковой температурой. Предел отношения температуры ∆t к расстоянию ∆x называется температурным градиентом, который обозначается lim и имеет размерность в град/м. Температурный градиент является векторной величиной и характеризует степень изменения температуры на единицу длины в направлении ее возрастания. Тепловой поток является также вектором, направление которого противоположно вектору температурного градиента и совпадает с направлением переноса тепла, а абсолютная величина его выражает интенсивность теплопередачи. Тепловой поток (интенсивность теплопередачи посредством теплопроводности) пропорционален температурному градиенту (закон Фурье). q= -ƛ(dt/dx) где q — тепловой поток в ккал/(м*ч); λ — коэффициент пропорциональности, называемый коэффициентом теплопроводности; dt и dx — температурный градиент. lim= dt/dx. λ = qδ/t1-t2 где q — тепловой поток в ккал/м 2 *ч; δ — толщина стенки в м; t1-t2 − — разность температуры между противоположными поверхностями стенки в град; λ — коэффициент теплопроводности материала в ккал/м ч град.

23. Основной закон теплопроводности. Величины, влияющие на процесс теплопроводности. Что является носителем энергии?Всякое физическое явление протекает во времени, пространстве и связано с понятием поля (температур, давлений, потенциала). Процесс теплопроводности связан с распределением температур внутри тела. Температу­ра характеризует степень нагрева и тепловое состояние тела. Совокупность значений температур в различных точках пространства в различные моменты времени называется температурным полем. Если температура конкретной точки тела зависит только от координат T = f (x, y, z ), то такое температурное поле называется стационарным, а если от координат и времени T = f (x, y, z, х) — нестационарным. Различают стационар­ное (независящее от времени) и нестационарное (зависящее от времени) поле температур, а также одно-, двух- и трехмерное поле, которое характе­ризуется одной, двумя или тремя координатами. Изотермическая поверхность — это геометрическое место точек оди­наковой температуры. Любая изотермическая поверхность разделяет тело на две области: с большей и меньшей температурой. Теплота переходит через изотермическую поверхность в область более низкой температуры. Количество теплоты AQ (Дж), проходящее в единицу времени Дх(с) через произвольную изотермическую поверхность, называется тепловым пото­ком Q, Дж/с (Вт). В общем случае тепловой поток может совпадать или не совпадать с линией тока теплоты, может изменяться вдоль линии тока теп­лоты или оставаться постоянным. Значения теплового потока могут зави­сеть или не зависеть от времен. Интенсивность теплообмена характеризуется плотностью теплового потока. Плотностью теплового потока q (или удельным тепловым пото­ком) называется количество теплоты AQ (Дж), проходящее через единицу поверхности F (м 2 ) в единицу времени Дх(с): q = ДQ/ДхF, Дж/(м 2 .с) или Вт/м 2 . Следовательно, плотность теплового потока q это тепловой поток Q (Вт), отнесенный к единице поверхности F (м 2 ): q = Q/F, Вт/м 2 . Французский ученый Жан Батист Фурье , установил, что для изотропных (твердых) сред количество передаваемой теплоты AQ (Дж) пропорционально падению температуры (-дT/дn), времени Дх(с) и площади сечения F (м 2 ), перпендикулярного направлению распространения теплоты. Матем. выражение закона теплопроводности Фурье: AQ = -λ T FAτ или Q = -λ T F, или q = -λ/T .

Читайте также:  Урок по теме металлы общие способы получения металлов

Источник

Оцените статью
Разные способы