Регистрация элементарных частиц
1. Приборы для обнаружения заряженных частиц.
2. Устройство и принцип работы.
Методы регистрации элементарных частиц основаны на использовании систем в долгоживущем неустойчивом состоянии, в которых под действием пролетающей заряженной частицы происходит переход в устойчивое состояние. Приборы, применяемые для регистрации ядерных излучений, называется детекторами ядерных излучений.
Регистрирующий прибор – более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванной пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние.
Газоразрядные счетчики. Счетчик Гейгера – детектор частиц, действие которого основано на возникновении самостоятельного электрического разряда в газе при попадании частицы в его объем. Изобретен в 1908 г. X. Гейгером и Э. Резерфордом, позднее был усовершенствован Гейгером и Мюллером.
Счетчик (рис. 3.3.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод) и тонкой металлической нити, идущей вдоль трубки (анод). Трубка заполнена газом. Действие счетчика основа на ударной ионизации. Заряженная частица пролетая в газе, отрывает от атома электрон и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов и ток через счетчик резко возрастает. При этом нагрузочном резисторе образуется импульс напряжения, который подается в регистрирующее устройство.
Рис. 3.3.1. Счетчик Гейгера. |
Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить.
Это происходит автоматически. Так как в момент появления импульса тока, падает напряжение на нагрузочном резисторе велико, то напряжение между анодом и катодом резко уменьшается, что разряд прекращается.
Счетчиком Гейгера регистрируют в основном электроны и гамма-кванты (последние, правда, с помощью дополнительного материала, наносимого на стенки сосуда, из которых гамма-кванты выбивают электроны).
В настоящее время созданы счетчики, работающие на иных принципах.
Камера Вильсона.Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать её некоторые характеристики. В камере же Вильсон быстро заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать.
Рис. 3.3.2. Камера Вильсона |
Камера Вильсона – трековый (от англ. «track» – след, траектория) детектор частиц. Создана Ч. Вильсоном в 1912 г. С помощью камеры Вильсона был сделан ряд открытий в ядерной физике и физике элементарных частиц, таких, как открытие широких атмосферных ливней (в области космических лучей) в 1929 г., позитрона в 1932 г., обнаружение следов мюонов, открытие странных частиц.
Принцип действия камеры Вильсона основан на конденсации пара на ионах с образованием капель воды.
Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парам воды или спирта. При резком опускании поршня, вызванный уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение и пар становится перенасыщенным. Неустойчивое состояние пара легко конденсируется, если в сосуде появляются центры конденсации.
Капельки жидкости, осевшие на ионах, делают видимым след пролетевшей частицы – трек, что дает возможность его сфотографировать. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека – оценить ее скорость. Помещение камеры в магнитное поле позволяет определить по кривизне трека отношение заряда частицы к ее массе (впервые предложено советскими физиками П. Л. Капицей[11] и Д. В. Скобельцыным[12]).
Пузырьковая камера. В 1952 г. Д. Глейзером было предложено использовать для обнаружения частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляется пузырьки пара, дающие видимый трек.
В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара. В качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика – около 0,1 с.
Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере.
Метод толстослойных фотоэмульсий. Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность. Метод фотоэмульсии был развит советскими физиками Л. В. Мысовским[13], Г. Б. Ждановым и др.
Способность быстрых заряженных частиц создавать скрытое изображение в фотоэмульсии широко используется в ядерной физике и в настоящее время. Ядерные фотоэмульсии особенно успешно применяются при исследовании в области физики элементарных частиц и космических лучей. Быстрая заряженная частица при движении в слое фотоэмульсии создает вдоль пути движения центры скрытого изображения.
Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы. По длине и толщине трека можно оценить энергию и массу частицы.
Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка для альфа-частиц, испускаемых радиоактивными элементами), но при фотографировании их можно увеличить. Преимущество фотоэмульсий в том, что время экспозиции может быть сколь угодно большим.
Сцинтилляционный счетчик. Устройство для регистрации альфа-частиц – спинтарископ.
Основными деталями спинтарископа является экран 3, покрытый слоем сульфида финка и короткофокусная лупа 4. Альфа-радиоактивный препарат помещают на конце стержня 1 примерно против середины экрана. При попадании альфа-частицы в кристаллы сульфида финка возникает вспышка света.
Процесс преобразования кинетической энергии быстро заряженной частицы в энергию световой вспышки называется сцинтилляцией. сцинтилляция представляет собой одну из разновидностей явления люминесценции.
Метод фотоэмульсий. Фотографический метод является исторически первым экспериментальным методом регистрации ядерных излучений, так как явление радиоактивности было открыто А. Беккерелем с помощью этого метода.
Тестирование по теме атомное ядро
[1] Энрико Ферми (1901 – 1954) – итальянский физик, наиболее известный благодаря созданию первого в мире ядерного реактора, внёсший большой вклад в развитие ядерной физики, физики элементарных частиц, квантовой и статистической механики. Считается одним из «отцов атомной бомбы».
[2] Энрико Ферми (1901 – 1954) – итальянский физик, наиболее известный благодаря созданию первого в мире ядерного реактора, внёсший большой вклад в развитие ядерной физики, физики элементарных частиц, квантовой и статистической механики. Считается одним из «отцов атомной бомбы».
[3] Демокрит (460 – 370 гг. до н.э) – дневрегреческий философ, один из основателей атомистики и материалистической философии.
[4] Мари Гелл-Ман (род. 1929 г.) – американский физик. Известен работами связанные с классификацией элементарных частиц и их взаимодействия.
[5] Джорд Цвейг (род. 1934 г.) – американский физик и нейробилог.
[6] Карл Дейвид Андерсон (1905 – 1991) – американский физик-экспериментатор. Известен открытием позитрона.
[7] Джулиан Сеймур Швингер (1918 – 1994) – американский физик. Внесший вклад в исследовании физики элементарных частиц.
[8] Шелдон Ли Глэшоу (род. 1932) – американский физик. Работает в области элементарных частиц.
[9] Карло Руббиа (род. 1934) – итальянский физик. Внесший вклад W и Z переносчиков слабого взаимодействия.
[10] Симон ван дер Мер (1925 – 2011) – нидерландский физик. Внесший вклад W и Z переносчиков слабого взаимодействия.
[11] Петр Леонидович Капица (1894 – 1984) – российский и советский физик, инженер и инноватор. Видный организатор науки. Основатель Института физических проблем (ИФП). Один из основателей Московского физико-технического института (МФТИ).
[12] Дмитрий Владимирович Скобельцын (1892 – 1990) – российский и советский физик-экспериментатор, специалист в области космических излучений и физики высоких энергий.
[13] Лев Владимирович Мысовский (1888 – 1939) – российский и советский физик. Автор большинства теоретических и практических разработок. Известен как создатель гамма-дефектоскопии.
Источник
Методы регистрации элементарных частиц
Элементарные частицы удается наблюдать благодаря тем следам, которые они оставляют при прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут себя обнаружить в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.
Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся приборы, которые регистрируют факт пролета частицы и, кроме того, позволяют в отдельных случаях судить об ее энергии. Вторую группу образуют так называемые трековые приборы, т. е. приборы, позволяющие наблюдать следы (треки) частиц в веществе.
К числу регистрирующих приборов относятся сцинтилляционный счетчик, черенковский счетчик, ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик.
1. Сцинтилляционный счетчик. Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы вызывают заметную световую вспышку (сцинтилляцию), называются фосфорами. Наиболее употребительными фосфорами являются (сернистый цинк, активированный серебром) и
(йодистый натрий, активированный таллием).
Сцинтилляционный счетчик состоит из фосфора, от которого свет по специальному световоду подается к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов, пропорциональная интенсивности вспышки. Это дает дополнительную информацию о регистрируемых частицах. Для этого типа счетчиков эффективность регистрации для заряженных частиц 100 %.
2. Черенковский счетчик. Принцип действия этого счетчика рассмотрен в п. 3.3.3. (с. 84). Назначение счетчиков – это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде. Кроме этого, счетчики позволяют разделять частицы по массе. Зная угол испускания излучения, можно определить скорость частицы, что при известной массе равносильно определению ее энергии. Если же масса частицы неизвестна, то она может быть определена по независимому измерению энергии частицы.
Черенковские счетчики устанавливаются на космических кораблях для исследования космического излучения.
3. Ионизационная камера представляет собой электрический конденсатор, заполненный газом, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение на обкладках конденсатора подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой – не разгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, на обкладках собираются ионы, возникшие непосредственно под действием заряженных частиц: измеряется суммарный ионизационный ток либо регистрируется прохождение одиночных частиц. В последнем случае камера работает как счетчик.
4. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра с тонкой проволокой, натянутой по его оси. Цилиндр служит катодом, проволока – анодом. В отличие от ионизационной камеры в газоразрядном счетчике основную роль играет вторичная ионизация. Различают два типа газоразрядных счетчиков: пропорциональные счетчики и счетчики Гейгера–Мюллера. В первых – газовый разряд несамостоятельный, во вторых – самостоятельный.
В пропорциональных счетчиках выходной импульс пропорционален первичной ионизации, т. е. энергии частицы, влетевшей в счетчик. Поэтому эти счетчики не только регистрируют частицу, но и измеряют ее энергию.
Счетчик Гейгера–Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но он работает в области вольтамперной характеристики, соответствующей самостоятельному разряду, т. е. в области высоких напряжений, когда выходной импульс не зависит от первичной ионизации. Этот счетчик регистрирует частицу без измерения ее энергии. Для регистрации отдельных импульсов возникший самостоятельный разряд нужно гасить. Для этого последовательно с нитью (анодом) включается такое сопротивление, чтобы возникший в счетчике ток разряда вызывал на сопротивлении падение напряжения, достаточное для прерывания разряда.
5. Полупроводниковый счетчик. Основным элементом этого счетчика является полупроводниковый диод, который имеет очень малую толщину рабочей области (десятые доли миллиметра). Вследствие этого счетчик не может регистрировать высокоэнергетические частицы. Но он обладает высокой надежностью и может работать в магнитных полях, поскольку для полупроводников магниторезистивный эффект (зависимость сопротивления от напряженности магнитного поля) очень мал.
К числу трековых приборов относятся камера Вильсона, диффузионная камера, пузырьковая камера и ядерные фотоэмульсии.
1. Камера Вильсона. Так называют прибор, созданный английским физиком Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Выполняется камера обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом, насыщенным парами воды или спирта. При резком расширении газа пар становится пересыщенным, и на траекториях частиц, пролетевших через камеру, образуются треки из тумана, которые фотографируются под разными углами. По внешнему виду треков можно судить о типе пролетевших частиц, об их количестве и их энергии. Поместив камеру в магнитное поле, можно по искривлению траекторий частиц судить о знаке их заряда.
Камера Вильсона долгое время была единственным прибором трекового типа. Однако и она не лишена недостатков, главный из которых – малое рабочее время, которое составляет примерно 1 % от времени, затрачиваемого на подготовку камеры к очередному запуску.
2. Диффузионная камера является разновидностью камеры Вильсона. Пересыщение достигается диффузией паров спирта от нагреваемой крышки к охлаждаемому дну. Возле дна возникает слой пересыщенного пара, в котором пролетающие заряженные частицы создают треки. В отличие от камеры Вильсона диффузионная камера работает непрерывно.
3. Пузырьковая камера. Этот прибор тоже является модификацией камеры Вильсона. Рабочим веществом является перегретая жидкость под высоким давлением. Резким сбросом давления жидкость переводится в неустойчивое перегретое состояние. Пролетающая частица вызывает резкое вскипание жидкости, и траектория оказывается обозначенной цепочкой пузырьков пара. Трек, как и в камере Вильсона, фотографируется.
Пузырьковая камера работает циклами. Ее размеры такие же, как и размеры камеры Вильсона. Жидкость много плотнее пара, что позволяет использовать камеру для исследования длинных цепей рождений и распадов высокоэнергетических частиц.
4. Ядерные фотоэмульсии. При использовании этого метода регистрации заряженная частица проходит в эмульсии, вызывая ионизацию атомов. После проявления эмульсии следы заряженных частиц обнаруживаются в виде цепочки зерен серебра. Эмульсия – среда более плотная, чем пар в камере Вильсона или жидкость в пузырьковой камере, поэтому протяженность трека в эмульсии более короткая. (Трек длиной в эмульсии соответствует треку длиной
в камере Вильсона.) Метод фотоэмульсий применяется для изучения частиц сверхвысоких энергий, которые находятся в космических лучах либо получаются в ускорителях.
Преимущества счетчиков и трековых детекторов объединены в искровых камерах, в которых быстрота регистрации, свойственная счетчикам, сочетается с более полной информацией о частицах, получаемой в камерах. Можно сказать, что искровая камера – это набор счетчиков. Информация в искровых камерах выдается немедленно, без последующей обработки. В то же время по действию многих счетчиков можно установить треки частиц.
Источник