Электросталеплавильное производство
Потребности в высококачественных конструкционных материалах непрерывно возрастают. Высококачественные стали имеют малые концентрации серы (ниже 0,02%), фосфора (менее 0,01%), кислорода, неметаллических включений и других вредных примесей, содержат различные легирующие элементы (хром, никель, вольфрам, молибден, титан, ванадий). Такие стали производят в электросталеплавильных печах. В них можно создавать и регулировать необходимую температуру, включая весьма высокую, вести плавку в вакууме и контролируемой атмосфере (окислительной, восстановительной, нейтральной).
Конструкции электропечей разнообразны: дуговые, индукционные, плазменные, электронно-лучевые и др. Основное количество сталей выплавляют в дуговых и индукционных печах. В дуговых печах (рисунок 5.3) нагрев металла происходит за счет тепла, выделяемого дугами, которые горят непосредственно между электродами и металлической садкой.
Мощные дуговые печи на переменном токе имеют диаметр ванны около 7,0 м, глубину 1,5 м, общую высоту до 5 м, диаметр графитированного электрода 600 мм. Вместимость печей достигает 100 т.
1 – свод; 2 – стенки; 3 – желоб; 4 – сталевыпускное отверстие;
5 – электрическая дуга; 6 – подина; 7 – рабочее окно; 8 – заслонка;
9 – электроды; 10 – шлак; 11 – металл
Рисунок 5.3 – Схема дуговой электропечи
В последние 20 лет внедряются печи постоянного тока, на которых сокращается расход графитовых электродов в 1,5–2,0 раза, электроэнергии – на 5–10%, ферросплавов и огнеупоров – на 15–20%, увеличивается выход металла на 2–4%. Снижается уровень шума, выделение технологических газов и пылей, стабилизируется электрический режим. Это обусловлено тем, что при переменном токе электрод работает, переменно анодом и катодом с частотой 50 раз в секунду, что снижает устойчивость горения дуги. При использовании постоянного тока электрод служит катодом, эмиссионная способность которого выше и устойчивее.
Футеровку дуговых электропечей выполняют из основных или кислых огнеупоров. Наиболее распространены печи с основной футеровкой. При производстве стали в основных электропечах шихту составляют стальной лом, легированные металлические отходы, передельный чугун, шлакообразующие, легирующие добавки, раскислители и другие материалы. Плавки ведут двумя способами: с полным окислением и без окисления примесей.
Процесс с полным окислением проводят тогда, когда перерабатывают материалы с повышенным содержанием фосфора и серы. Для окисления этих элементов и углерода загружают железную руду. Для связывания окисленных примесей и нормального шлакообразования в печь присаживают известь, плавиковый шпат и другие добавки.
После окисления примесей переходят к восстановительному периоду плавки для раскисления (удаления кислорода) металла и удаления серы. На этом этапе, используя сильные восстановители (молотый кокс, 75% ферросилиций, силикокальций, алюминий), переокисленный шлак (оксиды железа и марганца) восстанавливают до металла.
Конечный шлак восстановительного периода имеет состав, %:
55–60 (СаО + СаF2); 18–23 SiO2; 9–14 MgO; 5–10 Al2O3; по 0,5 и менее FeO, MnO, S.
Плавка без окисления (переплав) применяется для легированных отходов, количество которых на заводах высококачественных сталей достигает 25 – 40 % массы слитка. Процесс позволяет экономно использовать легирующие элементы шихты и ферросплавов. Окислительный период здесь отсутствует. Для перевода оксидов в шлак и защиты стали от окисления в печь добавляют некоторое количество извести.
Плавку в кислых дуговых печах применяют при производстве фасонных стальных отливок из ковкого чугуна. Сера и фосфор в кислых шлаках, содержащих до 50% и более оксида кремния, не удаляется, поэтому содержание в исходной шихте этих примесей не должно превышать 0,03%. Преимущество плавки заключается в повышении стойкости футеровки печи.
Электросталеплавильное производство характеризуется относительно небольшим газо- и пылевыделением. Выбросы электродуговых печей составляют, кг/т металла: 1,2–1,5 СО; 0,25–0,30 NOx; 7–10 пыли.
Технико-экономические показатели плавки в дуговых печах: продолжительность 3–4 часа, расход электроэнергии 500–800 кВт×ч и электродов – 5–9 кг на 1 т стали, выход годного металла 88–90%, стоимость шихтовых материалов 50–60% от стоимости последнего.
Для выплавки высококачественных легированных сталей и сплавов специального назначения применяют также индукционные печи (рисунок 5.4).
1 – каркас; 2 – подовая плита (асбоцементные плиты); 3 – индуктор;
4 – изоляционный слой; 5 – тигель; 6 – асбоцементная плита; 7 – сливной носок; 8 – воротник; 9 – гибкий токопровод; 10 – деревянные брусья
Рисунок 5.4 – Индукционная печь
Переменный ток, подводимый к индуктору (первичной обмотке, расположенной на периферии печи) возбуждает ток в металлошихте, загруженной в тигель, и расплавляет ее.
Наиболее крупные печи имеют вместимость до 60 т. Тигли изготавливают из основных (магнезитовых) и кислых (молотый кварцит) огнеупоров.
Шлак не обладает металлическим типом проводимости, поэтому не нагревается в переменном магнитном поле, но он нагревается за счет передачи тепла от металла и по сравнению с ним имеет более низкую температуру, что исключает активные обменные реакции между шлаком и металлом и удаление вредных примесей (серы и фосфора) из стали затруднено. Как следствие, при индукционной плавке необходимо использовать шихту с низким содержанием фосфора и серы. Обычно применяют индукционные печи с кислой футеровкой, стойкость которых достигает 150 плавок, основная футеровка выдерживает только 10–40 плавок.
При плавке стали в индукционных печах газовыделение незначительно, а пылевынос в 5–6 раз меньше, чем в электродуговых печах.
Существуют специальные виды электрометаллургии, которые используют для переплава слитков или заготовок, полученных в массовом производстве. Переплав существенно повышает качество стали вследствие удаления из нее газов и неметаллических включений и получения однородных слитков. В настоящее время известно несколько его видов (вакуумно-дуговой, электронно-лучевой, плазменно-дуговой, электрошлаковый переплав).
Мартеновский процесс
Мартеновский процесс ведут в пламенной отражательной печи, где основное количество тепла, необходимое для процесса, получают при сжигании топлива в горелочных устройствах, расположенных в торцевых частях (сбоку) печи над шихтой. Продукты горения формируют факел, от которого тепло передается ванне, куда загружают металлошихту. Газы через плавильное пространство покидают печь с противоположной от горелки стороны. Значительная часть теплового потока попадает на свод печи, отражается им и лучеиспусканием передается ванне печи. Пламенные отражательные печи имеют прямоугольное сечение и длину, значительно превышающую их ширину и высоту. Они нашли применение в черной и цветной металлургии. Мартеновские печи относятся к числу регенеративных. Сущность регенерации заключается в утилизации тепла продуктов горения для подогрева воздуха и низкокалорийного газа до 1100–1200°С перед вводом их в печь. Для подогрева строят камеры-регенераторы, заполненные кирпичной решеткой и работающие попеременно. По мере остывания одной и нагрева другой пары регенераторов меняют направление движения газа, воздуха и продуктов горения. Газ и воздух нагревают каждый с своем регенераторе. Природный газ при использовании как топливо не подогревают, так как его теплотворная способность обеспечивает необходимую температуру (1800–1900°С) в пламенном пространстве печи.
Сжигание топлива с коэффициентом избытка воздуха 1,05 создает в печи окислительную атмосферу (1–3 О2 и 7–15% СО2), которая окисляет металл. Образующиеся оксиды железа, кислород и двуокись углерода окисляют примеси чугуна. Скорость этих процессов из-за недостаточной концентрации кислорода в печной атмосфере значительно ниже, чем в конвертере, что обусловливает большую продолжительность мартеновской плавки (4–12 ч). Для ускорения окисления примесей чугуна в печь загружают железную руду. Физико-химические основы процессов шлакообразования и раскисления подобны конвертерному производству.
Современные мартеновские печи работают на газообразном (природный газ) и жидком (мазут) топливе. Мартеновские печи – крупные сталеплавильные агрегаты емкостью от 40 до 900 т, габариты которых достигают следующих значений: площадь пода – 190 м 2 ; длина, ширина, глубина ванны соответственно 28; 6,8; 1,4 м; высота свода – 3,5 м.
В зависимости от вида огнеупоров, используемых для футеровки печи, различают кислый и основной мартеновские процессы.
Составом шихты, соотношением твердого и жидкого чугуна реализуют два основных варианта: скрап-процесс и скрап-рудный процесс.
Скрап-процесс применяют на машиностроительных предприятиях или на металлургических заводах, не имеющих доменного производства. Шихта содержит до 60–85% стального лома (скрапа), до 15–40% твердого передельного чугуна (в чушках) и небольшое количество флюса (известняка). Чугун облегчает расплавление шихты, так как более легкоплавкий, чем скрап, и обеспечивает необходимый запас углерода в жидком металле для перемешивания, интенсивного нагрева металла и удаления из него примесей.
Скрап-рудный процесс осуществляют на заводах с доменным производством. Основной частью шихты является жидкий чугун (60–75% от массы металлической шихты), а остальное добавки скрапа (20–40%), железной руды и известняка.
Более распространен основной мартеновский процесс, поскольку кислый менее производителен и эффективен только при скрап-рудном процессе. Для кислого процесса необходима металлошихта с минимальным содержанием фосфора и серы.
Газы мартеновских печей имеют запыленность 2–10 г/м 3 и очищаются в тканевых фильтрах, трубах Вентури, сухих электрофильтрах.
Технико-экономические показатели печи емкостью 900 т составляют: годовая выплавка 1 млн. т, расход условного топлива 60 кг, кислорода 36 м 3 и огнеупоров 20 кг на 1 т стали. Выход годного составляет 92–95%. В структуре себестоимости определяющие затраты связаны с основными (74%), а также добавочными (до 17%) материалами.
Источник
Курсовая работа «Электросталеплавильный способ»
СКАЧАТЬ: Kursovoy_3.zip [207,46 Kb] (cкачиваний: 46)
Краткий исторический обзор развития электрометаллургии стали и ферросплавов
2 Специальная часть
3 Расчетная часть
4 Список используемой литературы
Электросталеплавильному способу принадлежит ведущая роль в производстве качественной и высоколегированной стали. Благодаря ряду принципиальных особенностей этот способ приспособлен для получения разнообразного по составу высококачественного металла с низким содержанием серы, фосфора, кислорода и других вредных или нежелательных примесей и высоким содержанием легирующих элементов, придающих стали особые свойства – хрома, никеля, марганца, кремния, молибдена, вольфрама, ванадия, титана, циркония и других элементов.
Преимущества электроплавки по сравнению с другими способами сталеплавильного производства связаны с использованием для нагрева металла электрической энергии. Выделение тепла в электропечах происходит либо в нагреваемом металле, либо в непосредственной близи от его поверхности. Это позволяет в сравнительно небольшом объеме сконцентрировать значительную мощность и нагревать металл с большой скоростью до высоких температур, вводить в печь большие количества легирующих добавок; иметь в печи восстановительную атмосферу и безокислительные шлаки, что предполагает малый угар легирующих элементов; плавно и точно регулировать температуру металла; более полно, чем других печах раскислять металл, получая его с низким содержанием неметаллических включений; получать сталь с низким содержанием серы. Расход тепла и изменение температуры металла при электроплавке относительно легко поддаются контролю и регулированию, что очень важно при автоматизации производства.
Электропечь лучше других приспособлена для переработки металлического лома, причем твердой шихтой может быть занят весь объем печи, и это не затрудняет процесс расплавления. Металлизованные окатыши, заменяющие металлический лом, можно загружать в электропечь непрерывно при помощи автоматических дозирующих устройств.
В электропечах можно выплавлять сталь обширного сортамента.
Краткий исторический обзор развития электрометаллургии стали и ферросплавов.
Развитие современной техники и промышленности основано в основном на применении металла. Получение достаточных количеств металла, обладающего нужными механическими, физическими и физико-химическими свойствами, позволяет сооружать мощные гидроэлектростанции, атомные реакторы и строительные конструкции, а также создавать аппараты химического производства, ракеты и электронно-вычислительные машины.
Интенсивное развитие техники и промышленности способствует увеличению числа применяемых сплавов и изменяет соотношение в удельном объеме производства. Однако первостепенное значение для развития промышленности имеет сталь. Сталеплавильное производство по объему и стоимости продукции превосходит производство других металлов и сплавов вместе взятых. В 1980 г. мировое производство стали превысило 700 млн. т.
Значительный объем производства объясняется широким распространением железных руд (в земной коре содержится железа 4,2%, оно занимает четвертое место после кислорода 49,13%) , относительной легкостью и дешевизной восстановления железа и руд, прекрасными свойствами стали как конструкционного материала. Сталь обладает высокой прочностью, пластичностью, легко поддается механической обработке и сваривается. Присадками легирующих элементов и термической обработкой можно в широком диапазоне изменять ее механические свойства, а также придавать особые физические и химические свойства. Значение легированных сталей особенно возросло в последние годы в связи с увеличением потребностями в стали с особыми свойствами и производство их равно 10 % от общего производства стали. Мировое производство стали в 1850г. составило 50тыс. т, в 1900г. 29млн. т, а в 1968 г. превысило 0,5 млрд. т.
Первым способом производства стали был процесс, предложенный в 1856г. Генри Бессемером и вызвавший переворот в промышленности и железнодорожном строительстве. Бессемеровский процесс впервые позволил получать жидкую сталь из чугуна, за малое время. В этом способе окисление осуществляется в конверторе продувкой жидкого чугуна воздухом.
Здесь тепловые потери невелики и тепла, выделяющегося в результате окисления примесей хватает для нагрева стали до 1600 С.
В 1864г. Мартен, применил разработанный Сименсом принцип регенерации тепла, построил первую печь, которая позволяла получать жидкую сталь из чугуна и переплавлять стальной лом. Эти 2 процесса в своем первом виде, не обеспечивали удаления фосфора и серы из металла, что ограничивало их применение. В 1879г. С. Томас положил начало выплавки стали основным процессам, предложив футеровать конвертор доломитом. Все эти процессы вместе с томасовским расширили возможности сталеплавильного производства.
Наряду с этими процессами, появились первые электросталеплавильные печи. Способ выплавки стали в электрических печах был запатентован еще в 1853г. Пишоном, который разработал конструкцию дуговой печи косвенного действия, т.е. с дугами, горящими между электродами над металлической ванной. В 1879г. Сименс создал печь прямого действия, в которой одним из полюсов электрической дуги явилась металлическая ванна. Однако прототипом современных сталеплавильных печей явилась печь Геру, который в 1899г. изобрел печь прямого действия с 2 электродами, подводимым к металлической ванне. Ток м/у электродами при этом замыкался через ванну, а дуга горела м/у каждым из электродов и металлом или частично покрывающим его шлаком. Первые дуговые печи Геру с 2 электродами были маломощными. Работали они на напряжении 45 В при силе тока 2-3 кА на жидкой шихте и использование их для ведения плавки на тв. завалке вызвало значительные трудности. Первые трехфазные дуговые печи были установлены в 1907г. в США и в 1910г. в России. Вскоре такие печи были построены в ФРГ, Франции и других странах. Широкие возможности в выборе шихты, неограниченный сортамент выплавляемой стали и высокое ее качество, легкость регулирования тепловых процессов, маневренность в последовательности плавок определили распространение трехфазных дуговых печей, которые заняли важное место в сталеплавильном производстве. В дальнейшем трехфазные дуговые печи были в значительной мере усовершенствованы, и в настоящее время они представляют собой крупные легко управляемые агрегаты с высокой степенью автоматизации. Значительные изменения дуговая электропечь претерпела в 60-х годах ХХ в. следствие мощности трансформаторов, совершенствования электрического и технологического режимов плавки производительность дуг.печей в этот период возросла в 2-4 раза по сравнению с производительностью печей аналогичной емкости в 1950-1960 гг. Появилась возможность повысить производительность печей до 100т/ч. Увеличение емкости печей и повышение мощности трансформаторов вызвали значительные улучшения технико – экономических показателей электросталеплавильного производства и определили основные направления его развития. При переходе на мощные трансформаторы разработана новая технология плавки, предусматривающая сокращение восстановительного периода, когда электрическая мощность используется неэффективно. На рубеже XIX и ХХ вв. были созданы и другие электропечи, например индукционные. Первая промышленная индукционная печь с железным сердечником была установлена в Гизинге (Швеция) в 1900 г. Дальнейшего развития эти печи не получили, с 1925 г. в промышленности использовали индукцилнные печи без сердечника. Благодаря развитию атомной энергетики, произошло улучшениу вакуумной техники. Поэтому в 1945-1946 гг. в США было установлено несколько вакуумных индукционных насосов. Несмотря на это, развитие вакуумный индукционный способ получил только в 1950 – 1951 гг. и в дальнейшем связано с развитием ракетной техники и реактивной авиации, требующих применения металлов особой частоты. В 1958 г. были установлены вакуумные индукционные печи с 2,5 – т тиглями, в 1961 г. – 6 — т , в 1968 г. – 15 – т, в 1978 г. – 25 – т.
Развитие индукционных печей вызвало развитие вакуумного дугового переплава в водоохлаждаемого кристаллизатора, позволяющего получать не только очень чистый, но и плотный слиток металла без зональной химической неоднородности. Методом вакуумного дугового переплава получают слитки массой в десятки тонн. Вакуумный дуговой переплав (ВДП) ведут при остаточном давлении 0,2-1,2 Па и такое давление является оптимальным с учетом дегазации металла и условий горения дуги. Дальнейшее понижение давления оказалось возможным при использовании для нагрева металла вместо электрической дуги электронного луча, не требующего для своего прохождения ионизации газов. Это, а также возможность переплавлять самые тугоплавкие металлы (вольфрам, молибден) и поддерживать жидкую ванну в вакууме в течение любого промежутка времени, способствовали развитию электроннолучевого метода получения металла, промышленное применение которого началось в конце 50 – х годов ХХ в. Наряду с процессами плавки в вакууме были разработаны новые способы электроплавки в обычной атмосфере. Важное значение для развития сталеплавильного производства имеет разработанный в 1952 – 1953 гг. в институте электросварки им. Е. О. Патона АН УССР способ электрошлакового переплава (ЭШП) расходуемых электродов, который в настоящее время наряду с ВДП получил широкое применение в качественной металлургии. Высокое качество металла при небольших затратах и простоте производства способствовало быстрому распространению способа ЭШП не только на отечественных заводах, но и на зарубежных. Сегодня находит применение и метод плазмено- дугового переплава (ПДП) стали и тугоплавких металлов с получением слитка в водоохлаждаемом кристалле. Переплав ведут в инертной атмосфере аргона[6].
Источник