Электролитический способ получения хлора

Курсовая работа: Получение хлора методом электролиза повареной соли

Быстрое развитие хлорной промышленности связано в основном с расширением производства хлорорганических продуктов – винилхлоридов, хлорорганических растворителей, инсектицидов и др. Хотя доля неорганиче6ских хлорпродуктов в общем потреблении хлора сравнительно невелика, их значение для промышленности и народного хозяйства трудно переоценить.

В России за последние десятилетие создано и продолжает развиваться производства многих неорганических хлорпродуктов.

Увеличивается производство жидкого хлора, хлоридов алюминия, кремния, титана, железа, цинка и хлоридов других металлов, применяемых в менее широких масштабах. Развивается производства хлоридов натрия, магния и калия, вырабатываются в значительных количествах хлораты кальция и перхлораты металлов и аммония.

Серьезные технические и экономические проблемы возникают в связи со значительным увеличением количества хлористого водорода, получающегося в качестве отходов в ряде производств органических и неорганических хлорпродуктов. Заслуживает большого внимания проблема рационального использования абгазного хлористого водорода, в части получения из концентрированных и разбавленных растворов соляной кислоты чистого 100%-го HCl для применения его в ряде процессов органического синтеза и оксихлорирования.

Литературы пот производству неорганических хлорпродуктов крайне мало. В последние годы издано несколько инженерных монографий, посвященных производству хлора, каустической соды и некоторых неорганических хлорпродуктов. Однако во многом производства – хлористого водорода и соляной кислоты, хлоратов натрия, калия, кальция, магния, перхлоратов и хлорной кислоты, водных растворов хлоридов железа, алюминия и некоторых других продуктов – нет литературы, в которых были бы систематизированы последние достижения в области их технологии. Кроме того, монография по отдельным видам технологии производства хлора, каустической соды и хлорпродуктов не могут заменить книгу, охватывающую весь комплекс этих производств.

Хлор входит в VII группу периодической системы элементов, атомный вес 35,453, молярный вес 70.906, атомный номер 17.

При нормальных условиях свободный хлор – зеленовато-желтый газ с характерным резким и раздражающим запахом. Он сжигается при -34,05 °С, образуя прозрачную жидкость янтарного цвета, затвердевающую при -101,6 °С и давлении 1 атм.

Ниже приведены основные физико-химические и термодинамические свойства хлора:

Кипения (сжижения) при 1 атм

Плотность, г/см 3

Сухого газа при 0°Си 1 атм.

Насыщенного пара при 0 °С и 3,617 атм.

Жидкого хлора при 0 °С и 3,617 атм

Удельный объем, м 3 /кг

Сухого газа при 0 °С и 1 атм.

Насыщенного пара при 0 °С и 3,617 атм.

Жидкого хлора при 0 °С и 3,617 атм

Вязкость при 20 °С, сПа

Плавления твердого хлора

Жидкого хлора при 30 °С

Название: Получение хлора методом электролиза повареной соли
Раздел: Рефераты по химии
Тип: курсовая работа Добавлен 03:53:10 08 сентября 2010 Похожие работы
Просмотров: 3705 Комментариев: 22 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно Скачать
Давление паров при 0 °С, атм. 3,617
Показатель преломления при 14 °С 1,367

При ведении соли аммония в водный раствор хлора образуются треххлористый азот и . Треххлористый азот образуется при взаимодействии аммиака или молей аммония с хлором или хлорноватистой кислотой:

При взаимодействии хлористого аммония с хлорноватистой кислотой при рН=9,5 образуется монохлорамин, при рН=4,5 и температуре ниже 0 °С не образуется.

Чистый хлор, получаемый электролизом водных растворов щелочных металлов, должен содержать не менее 96% хлора и не более 2% и 1% . Содержание влаги после осушки не должно превышать 0,04 вес.%.

В последнее время требования к качеству газообразного хлора, применяемого в синтезе ряда органических хлорпродуктов, сильно возросли. Содержание влаги в хлоргазе ограничивается 40–100 мг/м 3 , снижается допустимое содержание брома, соединений серы и других примесей.

Выпускаемые марки улучшенного едкого натра, получаемого по методу электролиза с ртутным катодом, должны удовлетворять приведенным ниже требованиям.

Содержание примесей, % не более

Железо в пересчете на

Хлораты в пересчете на

Алюминий в пересчете на

Марка I Марка II
Содержание , % не менее 45 42
Коэффициент светопропускания, %, не ниже 90 80

Выпускаются также реактивные и особо чистые едкий натр и едкое кали.

Основные физико-химические свойства водорода приведены ниже.

Плотность, г/см 3

При 0 °С и 760 мм рт. ст., кг/м 3

При температуре кипения, кг/л

Относительная (по воздуху)

Парообразования при 760 мм рт. ст.

Удельная теплоемкость при 20 °С и 760 мм рт. ст., ккал/(кг·°С)

Молекулярный вес 2,016
Мольный объем при 0 °С и 760 мм. рт. ст, л 22,43
Удельная газовая постоянная, ккал/(кг·°С) 986,96
Объем жидкости, образующейся из 1 м 3 газа при 15 °С и 760 мм рт. ст., л 1,166
Вязкость при 0 °С и 760 мм рт. ст., сП 0,0085
Теплопроводность при 0 °С и 760 мм рт. ст., ккал/(м·ч·°С) 0,140

Сырьем для электролиза служит хлорид натрия в виде каменной соли, самоосадочной соли или подземного рассола. Подготовка сырья к электролизу включает операции растворения (при использовании твердой соли), очистки рассола от механических примесей и удаления ионов кальция и магния.

Механические примеси удаляют отстаиванием рассола с последующим фильтрованием осадка, а ионы кальция и магния, которые отрицательно влияют на процесс электролиза, обработкой рассола раствором карбоната натрия или известковым молоком:

с последующей нейтрализацией избыточной щелочности соляной кислотой. Осадок карбонатов кальция и магния удаляют фильтрованием.

Полученный рассол должен иметь концентрацию соли 310–315 г./л, чтобы обеспечить, возможно, более низкий потенциал разряда ионов при электролизе. Также существуют допустимые пределы содержания ионов кальция и магния.

Рассол, поступающий на электролиз, представляет многокомпонентную систему, в которой содержатся ионы натрия, хлора, гидроксоний-катион и гидроксид-анион. Последовательность их разряда и образующиеся продукты определяются в соответствии с «правилом разряда» величиной их потенциалов разряда, которые зависят от условий электролиза и, весьма существенно, от материала катода. Различают два варианта технологического процесса электролиза водного раствора хлорида натрия: электролиз с твердым железным катодом (диафрагменный метод) и электролиз с жидким ртутным катодом.

Аноды электролизеров в обоих случаях изготавливают из одинаковых материалов: искусственного графита, пропитанного для уменьшения износа льняным маслом, или из титана, покрытого слоем оксидов рутения и титана. Аноды второго типа позволяют вести электролиз при высоких плотностях тока и более низком напряжении. Такие условия снижают расход электроэнергии на 10–12%. Поэтому оксидно-рутениевые аноды вытесняют графитовые: ими оснащено в настоящее время до 70% всех установок электролиза.

Технический электролиз водных растворов может осуществляться без выделения металлов или с их выделением на катоде. Среди электрохимических процессов разложения водных растворов без выделения металлов наибольшее распространение получил электролиз водных растворов хлорида натрия.

Читайте также:  Как классифицируются измерения по способу получения информации

Электролиз водных растворов хлорида натрия.При электролизе водных растворов хлорида натрия получают хлор, водород и едкий натр (каустическая сода).

Хлор – при атмосферном давлении и обычной температуре газ желто-зеленого цвета с удушливым запахом. при атмосферном давлении температура кипения хлора –33,6° С, температура замерзания -102° С. Хлор растворяется в воде, органических растворителях и обладает высокой химической активностью.

Хлор потребляется прежде всего химической промышленностью для производства различных органических хлорпроизводных, идущих для получения пластических масс, синтетических каучуков, химических волокон, растворителей, инсектицидов и т.п. В настоящее время более 60% мирового производства хлора используется для органического синтеза. Помимо этого хлор используют для производства соляной кислоты, хлорной извести, хлоратов и других продуктов. Значительные количества хлора идут в металлургию для хлорирования при переработке полиметаллических руд, извлечения золота из руд, а также его используют в нефтеперерабатывающей промышленности, в сельском хозяйстве, в медицине и санитарии, для обезвреживания питьевой и сточных вод, в пиротехнике и ряде других областей народного хозяйства. В результате развития сфер использования хлора, главным образом благодаря успехам органического синтеза, мировое производство хлора составляет более 20 млн. т/год.

Едкий натр, или каустическая сода, – кристаллическое непрозрачное вещество, хорошо растворимое в воде, имеющее при атмосферном давлении температуру плавления 328° С. В промышленности выпускается твердый едкий натр и его водные растворы. Едкий натр широко используется во многих отраслях промышленности – целлюлозно-бумажной, химических волокон, нефтеперерабатывающей, органического синтеза, мыловаренной, лакокрасочной и в ряде других.

Водород – газ, температура кипения которого при атмосферном давлении –252,8 °С. Водород используют для синтеза важнейших неорганических и органических продуктов: аммиака, метанола и других спиртов, для гидрогенизации жиров, твердых и жидких топлив, очистки нефтепродуктов и др.

Сырьем для производства хлора и щелочи служат, главным образом, растворы поваренной соли, получаемые растворением твердой соли, или же природные рассолы. Растворы поваренной соли независимо от пути их получения содержат примеси солей кальция и магния и до того, как они передаются в цеха электролиза, подвергаются очистке от этих солей. Очистка необходима потому, что в процессе электролиза могут образовываться плохо растворимые гидроокиси кальция и магния, которые нарушают нормальный ход электролиза. Очистка рассолов производится раствором соды и известковым молоком. Помимо химической очистки, растворы освобождаются от механических примесей отстаиванием и фильтрацией. Электролиз растворов поваренной соли производится в ваннах с твердым железным (стальным) катодом и с диафрагмами и в ваннах с жидким ртутным катодом. Промышленные электролизеры, применяемые для оборудования современных крупных хлорных цехов, должны иметь высокую производительность, простую конструкцию, быть компактными, работать надежно и устойчиво.

Электролиз растворов хлорида натрия в ваннах со стальным катодом и графитовым анодом позволяет получать едкий натр, хлор и водород в одном электролизере. При прохождении постоянного электрического тока через водный раствор хлорида натрия можно ожидать выделения хлора, а также кислорода:

Нормальный электродный потенциал разряда OH – – ионов составляет +0,41 В, а нормальный электродный потенциал разряда ионов хлора равен +1,36 В. В нейтральном насыщенном растворе хлорида натрия концентрация гидроксильных ионов около 1·10 -7 г-экв/л. При 25° С равновесный потенциал разряда гидроксильных ионов будет φар =0,82 В. Равновесный потенциал разряда ионов хлора при концентрации NaCl в растворе 4,6 г-экв/л равен φар =1,32 В. Следовательно, на аноде с малым перенапряжением должен в первую очередь разряжаться кислород. Однако на графитовых анодах перенапряжение кислорода много выше перенапряжения хлора и поэтому на них будет происходить в основном разряд ионов Cl — с выделением газообразного хлора по реакции (а). Выделение хлора облегчается при увеличении концентрации NaCl в растворе в следствии уменьшения при этом равновесного потенциала. Это является одной из причин использования при электролизе концентрированных растворов хлорида натрия, содержащих 310–315 г./л. На катоде в щелочном растворе происходит разряд молекул воды по уравнению

Атомы водорода после рекомбинации выделяются в виде молекулярного водорода:

Разряд ионов натрия из водных растворов на твердом катоде невозможен в следствии более высокого потенциала их разряда по сравнению с водородом. Поэтому остающиеся в растворе гидроксильные ионы образуют с ионами натрия раствор щелочи. Процесс разложения NaCl можно выразить следующими реакциями:

Просуммировав уравнения получим:

То есть на аноде идет образование хлора, а у катода – водорода и едкого натра. При электролизе наряду с основными описанными процессами могут протекать и побочные, один из которых описывается уравнением (б). Помимо этого, хлор, выделяющийся на аноде, частично растворяется в электролите и гидролизуется по реакции

В случае диффузии щелочи (ионов ОН — ) к аноду или смешения катодных и анодных продуктов хлорноватистая и соляная кислоты нейтрализуются щелочью с образованием гипохлорита и хлорида натрия:

Ионы ClO – на аноде легко окисляются в ClO3 — Следовательно, из-за побочных процессов при электролизе будут образовываться гипохлорит, хлорид и хлорат натрия, что снижает выход по току и коэффициент использования энергии. В щелочной среде облегчается выделение кислорода на аноде, что также будет ухудшать показатели электролиза. Чтобы уменьшить протекание побочных реакций, следует создать условия, препятствующие смешению катодных и анодных продуктов. К ним относятся разделение катодного и анодного пространств диафрагмой и фильтрация электролита через диафрагму в направлении, противоположном движению ОН – – ионов к аноду. Такие диафрагмы называются фильтрующими диафрагмами и выполняются из асбеста.

Электролизеры БГК-17 рассчитаны на номинальную нагрузку 25 кА. Она выпускается для работы при 750 и 900 А/м 3 , но могут работать и при более высокой плотности тока. Электролизеры этого типа предназначены в основном для цехов электролиза мощностью 25–100 тыс. т хлора в год.

В электролизерах типа БГК-17 применена конструкция разветвленного катода, состоящего из узких плоских катодных пальцев, выполненных из стальной сетки и расположенных в виде четырех или шести гребенок. Катоды электролизеров имеют стальной каркас, что обеспечивает ток по поверхности катода. При правильном соотношении объемов катодного и анодного пространства в этих электролизерах можно значительно увеличить рабочую высоту электродов без опасения снизить выход по току.

Конструкция катодного блока предусматривает повышенное газонаполнение в катодном пространстве и исключает возможность снижения давления фильтрации через диафрагму в нижней части. В электролизерах применен нижний подвод тока к анодам. Верхняя часть анодного пространства свободна от анодов и моет быть достаточно развита в высоту.

Читайте также:  Игнор это лучший способ насилия

Электролизеры БГК-17 отличаются большой высотой, что обеспечивает компактность конструкции и высокие съемы продукции с единицы площади производственного здания при сравнительно невысокой плотности тока, пониженные удельные расход электроэнергии и затраты цветных металлов по сравнению с электролизерами других типов. Достигнута хорошая герметичность в местах соединений катодного блока с анодным комплексом и крышкой.

Схема устройства электролизера БГК-17 на нагрузку 25 кА показана на рис. 1.

1 – перфорированный катод, 2 – диафрагма, 3 – катодное пространство, 4 – анод, 5 – анодное пространство.

Рис. 1. – Электролизер вертикального типа

Катодный блок представляет собой стальной корпус, внутри которого в четыре ряда вмонтированы гребенки катодных пальцев представляющих собой сплющенные полые карманы, выполненные из металлических каркасов с натянутой на них стальной проволочной сеткой. Толщина катодных пальцев 20 мм. Крайние каркасы катодных гребенок приварены к продольным стенкам корпуса катода, два средних образуют двухстороннюю гребенку, приваренную к торцевым стенкам корпуса.

Внутреннее пространство катодных элементов в электролизере сообщается между собой, образуя общее катодное пространство, заполненное католитом, а в верхней части – водородом. Между двумя соседними катодными гребенками сохраняется циркуляционное пространство, свободное от электродов.

На сетчатую поверхность катода насасывается асбестовая диаграмма. В корпусе катода предусмотрен штуцер для присоединения к вакуумной линии при насасывании диафрагмы.

Анодный блок состоит из графитовых плит толщиной 50 мм и шириной 250 мм, монтируемых на стальном анодном днище, которое одновременно используется для подвода тока к анодным плитам с помощью специальных контактных устройств (без применения свинца).

Днище электролизера вместе с контактной частью анода для защиты от действия хлорсодержащего анолита заливают битумной массой специального состава, поверх которой наносят тонкий слой бетона. Битумная масса имеет температуру плавлении, удобную для ее нанесения и удаления. При комнатной температуре масса достаточно хрупка и легко удаляется пневматическим инструментом. Во время работы электролизера масса размягчается и заполняет все пустоты, поры и возможные трещины. При этом повышается ее адгезия к графиту и металлу и увеличивается надежность защиты анодного контакта.

Ток к анодного днищу подводится с помощью контактных пластин, приваренных к днищу электролизера, а ток к катоду – через пластины, приваренные к катодному корпусу.

При установке катодного блока на анодный комплект графитовые плиты располагаются в промежутках между пальцами катодных гребенок. При новых анодах расстояние между электродами составляет около 12 м. щелочь из катодного пространства сливается по нижнему штуцеру, соединенному сифонной трубой с капельницей. Уровень жидкости в катодном пространстве можно регулировать, меняя положение подвижной трубы для слива щелочи. Водород отводится из электролизера по верхнему штуцеру катодного блока.

Стенки корпуса катода подняты несколько выше катодных карманов и образуют надкатодную камеру и раструб для устранения крышки. Для защиты от действия хлора внутренние стенки раструба покрывают слоем бетона.

Бетонная крышка электролизера типа БГК-17 изготавливается в металлических формах. Для предотвращения от разрушения при действии кислого анолита и влажного хлора крышку выполняют из кислотобетона, стойкого в условиях работы электролизера. При использовании таких крышек исключается загрязнение анолита солями кальция и магния, как это происходит в результате коррозионного разрушения крышки в случае применения обычного бетона на портланд-цементе.

Крышка электролизера снабжена отверстиями для отвода хлора, подачи свежего рассола, установки термометра, измерителя уровня рассола и отбора проб анолита. После установки в раструбе катода крышка уплотняется специальной замазкой.

В последнее время в электролизерах БГК-17 с успехом стали применяться стальные гуммированные крышки, что облегчает конструкцию электролизеров, их монтаж и обслуживание.

Уплотнение между анодным комплектом и катодным блоком достигается за счет собственной тяжести катода с крышкой и с помощью дополнительной болтовой стяжки. Особая конструкция уплотнительного устройства в электролизере позволяет легко и надежно герметизировать стык между анодной и катодной частями электролизера и обеспечивает точность расположения анодов между катодными пальцами при сборке. Устройство для уплотнения исключает возможность течи электролита, что позволяет поддерживать чистоту и опрятный вид серии электролизеров во время их работы.

При примени сдвоенного сварного катода достигается максимальное развитие активной катодной поверхности и интенсивная естественная циркуляция электролита. Графитовые аноды с трех сторон окружены катодами, что также увеличивает рабочую анодную поверхность.

Надежный токопровод к анодам без применения свинца, подвод тока к катодной сетке через корпус катода и приваренный к нему каркас обеспечивают в электролизерах БГК назначенный перепад напряжения в контактах и подводе тока к электродам. Возможность при монтаже точного регулирования и фиксации положения анодов позволяет точно установить расстояние между электродами и снизить напряжение на электролизере.

Конструкция электролизера дает возможность работать при высокой температуре анолита – до 95–100 °С, что в свою очередь способствует снижению рабочего напряжения на электролизере и увеличению выходов по оку. Для уменьшении потерь тепла и улучшения санитарных условий работы в цехе электролиза наружные поверхности катода электролизера покрываются слоем тепловой изоляции. Электролизер компактен и полностью герметичен, что устраняет утечки электролитов и газов.

За счет большой высоты крышки электролизера обеспечивается возможность изменения уровня анолита в пределах от 50 до 300–400 мм над верхним краем катода. Поэтому электролизеры работают с подачей постоянного количества рассола, необходимого для получения щелочи концентрацией 130–140 г./л . Контроль питания электролизера осуществляется обычно с помощью ротаметра. На некоторых заводах подача рассола в каждый электролизер регулируется по уровню анолита, который устанавливается в зависимости от состояния диафрагмы и изменяется по мере ее старения. Для установления требуемого уровня анализируют католит, вытекающий из электролизера.

Питание электролизера рассолом может осуществляться через калибровочные отверстия диафрагмы. Работа электролизера с подачей постоянного количества рассола и при одинаковой нагрузке по току создает условия для получения максимально возможного выхода по току при высокой концентрации щелочи.

В процессе электролиза происходят изменения концентрации электролит, которые обусловлены участием ионов в переносе тока, химическими процессами, протекающими на электродах и а объеме электролита, испарением влаги и уносом ее с газообразными продуктами электролиза – хлором и водородом.

В электролизерах с твердым катодом объем католита меньше объема поступающего на электролиз рассола . Уменьшение объема связано с превращением хлорида натрия в гидроокись, имеющую меньший молекулярный объем, расходом воды на химический процесс и испарение и унос в виде паров с выделяющимися газами. Степень изменения объема католита:

Читайте также:  Грузди черные соленые рецепт холодный способ

,

где и — мольные концентрации хлорида щелочного металла в исходном растворе и католите, соответственно;

— мольная концентрация гидроокиси щелочного металла в католите.

Ниже приведен расчет концентрации соли в анолите, а также соли и щелочи в католите с учетом испарения и уноса влаги с газами.

Незначительный расход воды, связанный с протеканием побочных реакций, не учитывается. Для упрощения принято, что выход по току, температура и давление газов для анодного и катодных продуктов одинаковы.

При подаче в анодное пространство рассола, моляльные концентрации которого на 1000 г. воды (55,5 моль) поступит молей .

При степени разложения соли через ячейку должно быть пропущено фарадеев электричества и на аноде должно выделиться г-экв хлора.

Если процесс электролиза проводить в условиях, исключающих электролитический перенос ионов из катодного пространства в аноде, то количество ионов хлора, перенесенным током в анодные пространство из катодного, составит г-ионов, где — число переносы хлор-иона.

Общее количество г-ионов хлора, находящееся в рассматриваемом объеме анолита и поступающее затем в катодное пространство при стационарном процессе, составит:

,

или после преобразования:

.

Учитывая, что число переноса катиона , получим:

.

На аноде выделяется молей газообразного хлора. Если принебречь объемом и и подсасываемого к хлору воздуха, то количество молей влаги, уносимой с хлор-газом в виде паров, составит:

,

где — общее давление влажного газа;

— парциальное давление паров воды в хлоре над анолитом.

Моляльность анолита можно определить из выражения:

или .

При .

На катоде образуется молей гидроокиси натрия и выделяется молей газообразного водорода, при этом на химическую реакцию расходуется молей воды. Количество воды, уносимой с водородом в виде паров воды, составит:

,

где – парциальное давление паров воды в водороде над католитом.

Содержание поваренной соли в католите определяется по разности между поступившим и разложившимся количествами:

.

Содержание воды в католите составит:

.

Моляльность католита (по ) составит:

,

А по :

.

Суммарная мольяность католита по и :

.

Степень изменения количества воды в электролите в процессе электролиза:

.

Чтобы перевести единицы концентрации из мольяльности в г/л () можно воспользоваться выражением:

,

где — моляльность раствора;

— плотность раствора;

— молекулярный вес растворенной соли.

Моляльность католита по поваренной соли и каустической соде составит:

,

.

Снижение парциального давления паров воды над электролитическими щелаками может быть приближенно принято равным сумме снижения парциального давления над соответствующими растворами гидроокиси натрия .

.

При таком подсчете парциальные давления паров воды над католитом мало отличаются от парциального давления над насыщенным раствором поваренной соли при той же температуре.

Если принять, что , то тогда получаем:

.

При парциальном давлении паров воды над электролитом выше 400–500 мм. рт. ст. унос паров воды резко возрастает. При парциальном давлении паров около 720 мм. рт. ст. теоретически с газами должно быть унесена вся вода из раствора. Поэтому при сильном повышении температуры электролиза происходит интенсивное испарение влаги, пересыщение раствора и выделения кристаллов соли, которые забивают поры диафрагмы и приводят к нарушению нормального процесса электролиза.

Материальный баланс элетролизера осложняется наличием примесей, например соды, щелочи и сульфатов, в мешающем электролизу растворе, протеканием процессов выделения на аноде кислорода и окисления графитовых анодов в образованием в основном двуокиси углерода, а также вторичных процессов растворения и гидролиза хлора в анолите и последующих реакций между растворенным хлором и ионами с образованием гипохлорита и хлората. Однако для практических целей приведенная выше приближенная схема расчета материального баланса дает достаточно точные результаты.

Образующийся в электролизере гипохлорит практически полностью восстанавливается на катоде с образованием исходного хлорида натрия. Количество хлората натрия, уходящего с катодными щелоками, не превышает обычно десятых долей процента от образовавшейся каустической соды. Поэтому в практических балансах электролизера эти процессы могут не учитываться. Расчет воды и образования двуокиси углерода за счет сгорания анодов в связи с выделением кислорода можно учесть приближенно, приняв, что снижение выхода по току связано лишь с разрядом ионов на анод.

Расход воды на разложение составит , а количество двуокиси углерода, образовавшегося от сгорания анодов, равно . При температуре 90–95 °С, поддерживаемой в современных электролизерах, потери воды на побочные процессы не превышает 0,5–1,0% общего расхода воды на химические процессы и испарение.

В настоящее время едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них – электролиз с твёрдым асбестовым или полимерным катодом (диафрагменный и мембранный методы производства), третий – электролиз с жидким ртутным катодом (ртутный метод производства). В ряду электрохимических методов производства самым лёгким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути. Мембранный метод производства самый эффективный, наименее энергоемкий и наиболее экологичный, но и самый капризный, в частности, требует сырье более высокой чистоты.

Едкие щёлочи, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом. Для некоторых производств это важно. Так, в производстве искусственных волокон можно применять только каустик, полученный при электролизе с жидким ртутным катодом. В мировой практике используются все три метода получения хлора и каустика, при явной тенденции в сторону увеличения доли мембранного электролиза. В России приблизительно 35% от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65% – электролизом с твёрдым катодом (диафрагменный и мембранный методы).

1. Аблонин Б.Е. Основы химических производств. – М.: Химия, 2001.

2. Бесков В.С. Общая химическая технология и основы промышленной экологии. – М.: Химия, 1999.

3. Бесков В.С. Моделирование каталитических процессов и реакторов. – М.: Химия, 1991.

4. Кутепов А.М. Общая химическая технология. – М.: Высшая школа, 1990.

5. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. – М.: Химия, 1981.

6. Позин М.Е. Технология минеральных удобрений. – Л.: Химия, 1983.

7. Расчеты химико-технологических процессов. / под ред. Мухленова И.П. – Л.: Химия, 1982.

8. Степанов В.С. Анализ энергетического совершенствования технологических процессов. – Новосибирск: Наука, 1984.

9. Фролов Ю.Г. Физическая химия. – М.: Химия, 1993.

10.Химико-технологические системы. / под ред. Мухленова И.П. – М.: Химия, 1986.

Источник

Оцените статью
Разные способы