Электроимпульсный способ разрушения горных пород
Изобретение относится к области разрушения (резания, бурения) горных пород и искусственных твердых материалов, например бетона, керамики и др. электрическими импульсными разрядами, и может найти применение в строительстве, горном деле, ремонтно-строительных работах на дорогах, аэродромах, полигонах и т.п. Электроимпульсный способ разрушения горных пород перемещающимся двухстержневым электродным устройством заключается в том, что шаг перемещения электродов устройства между двумя электрическими импульсами выбирают из следующего условия: m = (0,33-1,11)·(Wз·L)/Wопт1, причем Wз = (0,9 ч 3,0)·Wопт1/n, где m — шаг перемещения электродов устройства, мм; W3 — энергия, запасаемая источником импульсов, Дж; L — межэлектродный промежуток, мм; Wопт1 — оптимальная энергия разрушения за один импульс для горной породы с коэффициентом по Протодьяконову, равным 5, Дж; n — число импульсов на межэлектродном промежутке. Изобретение обеспечивает снижение массогабаритных параметров источника высоковольтных импульсов вследствие уменьшения энергии, запасаемой источником высоковольтных импульсов. 1 ил., 2 табл.
Изобретение относится к области разрушения (резание, бурение) горных пород и искусственных твердых материалов, например бетона, керамики и др. электрическими импульсными разрядами, и может найти применение в строительстве, горном деле, ремонтно-строительных работах на дорогах, аэродромах, полигонах и т.п.
Известен способ разрушения, который предназначен для резания горных пород и искусственных материалов электрическими импульсными разрядами (Курец В.И., Усов А.Ф., Цукерман В.А. Электроимпульсная дезинтеграция материалов. — Апатиты. Изд. Кольского научного центра РАН, 2002 г. — с. 20-22). При этом способе резания на горную породу устанавливается резак, состоящий из двух или нескольких чередующихся высоковольтных и заземленных электродов. Электроды и разрезаемая поверхность горной породы помещаются в диэлектрическую жидкость или воду, электрическая прочность которых превышает электрическую прочность горной породы в заданном временном диапазоне. Затем на высоковольтные электроды подают импульсы высокого напряжения микросекундной длительности. В этом случае разряд между электродами происходит в горной породе, что приводит к ее разрушению. Резак перемещается в глубь горной породы после того, как разряды произойдут между каждой парой электродов. Причем количество разрядов для каждой пары больше одного. В случае двухэлектродного устройства — это два сплошных или зубчатых пластинчатых электрода, один из которых высоковольтный, а другой — заземленный. Перемещение в глубь горной породы возможно только тогда, когда вся заключенная между электродами порода будет разрушена. В результате рассмотренного характера разрушения резак углубляется в горную породу на заданную глубину. Увеличение длины щели сверх длины резака осуществляется перестановкой резака на новое место и цикл повторяется. Длина щели за цикл не более 350 мм. Ширина щели не менее 50 мм.
Достигнутые удельные энергозатраты составляют, например, в граните Wуд=6,6-6,0 кВтч/м 2 , в песчанике Wуд=4,0-6,5 кВт
ч/м 2 , в известняке Wуд=3,5-4,5 кВт
ч/м 2 . Оптимальная энергия, запасаемая генератором импульсов, Wопт, составляет сотни — тысячи джоулей.
Недостатками этого способа являются:
— большие массогабаритные параметры установки и большая ее капиталоемкость вследствие большой энергии, запасаемой генератором импульсов: объем 0,84 м 3 , вес 530 кг.
— высокие энергозатраты из-за деформации импульса напряжения, особенно при использовании воды, следствием чего являются большие потери энергии в предпробивной стадии и необходимость коррекции импульса напряжения, а также зависания резака на стенках щели, что ухудшает эффективность резания.
Известен также электроимпульсный способ разрушения горных пород, выбранный нами за прототип (патент РФ №2123596, МПК 7 Е 21 С 37/18, опубл. 14.10.96 г.), в котором описан инструмент, представляющий собой многоэлектродную систему, а в пределе двухэлектродную, где чередуются высоковольтные и заземленные электроды, расположенные как по периферии скважины, так и в центре, т.е. система электродов соответствует резаку, только режет круглую щель или скважину. Электроды могут перемещаться по кругу на расстояние не менее межэлектродного. Перемещение двух и четырех электродного устройства по забою скважины происходит после подачи на них определенного числа импульсов, т.е. перемещение происходит циклически, а не непрерывно. В прототипе оптимальная энергия, запасаемая генератором импульсов, определяется из условия Wопт=90L 1,6 , где L — межэлектродный промежуток, мм. Например, для песчаника при L=40 мм оптимальная запасаемая энергия Wопт=880 Дж.
Недостатками этого способа являются:
— большая энергия, запасаемая ГИН (880 Дж и более), следствием чего являются большая стоимость источника высоковольтных импульсов и большие его массогабаритные параметры: объем 3,8 м 3 , вес 720 кг.
Основной технической задачей предлагаемого электроимпульсного способа разрушения горных пород и искусственных материалов является снижение массогабаритных параметров источника высоковольтных импульсов вследствие уменьшения энергии, запасаемой источником высоковольтных импульсов. В конкретном примере масса и габариты источника по сравнению с прототипом меньше в 8,4-38 раз соответственно, а запасаемая энергия меньше в 17,6.
Указанная техническая задача достигается тем, что в электроимпульсном способе разрушения горных пород перемещающимся двухстержневым электродным устройством, согласно предложенному решению, шаг перемещения электродов устройства между двумя электрическими импульсами выбирают из следующего условия:
где m — шаг перемещения электродов устройства, мм;
W3 — энергия, запасаемая источником импульсов, Дж;
L — межэлектродный промежуток, мм;
Wопт1 — оптимальная энергия разрушения за один импульс для горной породы с коэффициентом по Протодьяконову, равным 5, Дж;
n — число импульсов на межэлектродном промежутке.
Проведенный заявителем анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественные всем признакам заявляемого способа отсутствуют. Следовательно, заявляемое изобретение соответствует условию патентоспособности «новизна».
Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа заявленного изобретения, показали, что они не следуют явным образом из уровня техники.
Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками изобретения преобразования на достижение указанного технического результата. Следовательно, изобретение соответствует условию патентоспособности «изобретательский уровень».
Пример конкретного выполнения.
На чертеже приведено устройство резака, состоящего из одного высоковольтного электрода 1 и одного заземленного электрода 2, закрепленных в изоляционной пластине 3 и установленные на блок горной породы 4 в баке 5 с водопроводной водой 6. Для перемещения электродной системы по блоку горной породы 4 использовался реверсивный электродвигатель 7 и привод 8. Импульсы высокого напряжения подаются от генератора импульсов 9 на высоковольтный электрод 1, а заземленный электрод 2 присоединен к «земле». При электрическом пробое горной породы 4 между электродами 1 и 2 происходит образование канала разряда 10. Использовался генератор импульсов с запасаемой энергией W3=50 Дж. Массогабаритные параметры генератора следующие: диаметр 400 мм, высота 800 мм, объем 0,1 м 3 , вес 86 кг. Эксперименты проводились на блоках песчаника и гранита. Расстояние между электродами 1 и 2 составляло L=28 мм — для песчаника, L=20 мм — для гранита.
Способ разрушения осуществляется следующим образом. Электродное устройство, состоящее из высоковольтного электрода 1, заземленного электрода 2 и изоляционной пластины 3, устанавливается на блок горной породы 4 и все это помещается в воду. К электродной системе подсоединяется электродвигатель 7 при помощи привода 8, высоковольтный электрод 1 присоединяется к генератору импульсов 9, а заземленный электрод 2 — к “земле”. Включается генератор импульсов 9 и одновременно с ним включается реверсивный электродвигатель 7, который начинает перемещать электродную систему по поверхности блока горной породы 4 с заданной скоростью, которая устанавливается приводом 8. При этом на электродную систему непрерывно подаются импульсы напряжения с заданной частотой следования. В результате образуется полоса разрушения — щель. При достижении электродной системой конца блока горной породы 4 реверсивный электродвигатель 7 переключается на обратное движение электродной системы по тому же пути, как и в предыдущем случае, но электродная система перемещается в глубь блока горной породы 4 на глубину произведенного разрушения. В результате многократных реверсивных перемещений электродной системы нарезается щель необходимой глубины на всей заданной длине блока горной породы 4. Нами были прорезаны щели в песчанике (f=4) и граните (f=9). На основании выражения (2) для этих горных пород имеют место значения Wоптi/Wопт1=0,9 и 1,55 соответственно. Практически целесообразно производить резание различных горных пород одним и тем же генератором импульсов.
Коэффициенты (0,9-3,0) характеризуют относительную зависимость оптимальной энергии Wопт от крепости горной породы. Крепость горной породы характеризуется коэффициентом крепости f, разработанным профессором Протодьяконовым (Справочник мастера колонкового бурения/А.Л. Авруцкий, С.А. Волков, Е.А. Демьянова и др. — М.: ГНТИЛ по горному делу. — 1960. — 528 с.). Нами для эффективного разрушения электроимпульсным способом выбран диапазон коэффициентов крепости f=4-20. Коэффициент f=4 соответствует средним по крепости горным породам (например, песчаники), а f=20 — высшей степени крепким и очень крепким горным породам (например, микрокварциты).
Для электроимпульсного способа характерным является увеличение оптимальной энергии разрушения за один импульс Wопт с увеличением крепости горной породы. В табл. 1 приведены значения Wопт для некоторых горных пород (песчаник, гранит, уртит, микрокварцит) и соответствующие им коэффициенты крепости f по Протодьяконову (Справочник мастера колонкового бурения для межэлектродного промежутка L=30 мм.
В табл. 1 взяты отношение Wопт/Wопт1=0,9, что соответствует средним по крепости (f=4) горным породам, слабее которых электроимпульсным способом разрушать не эффективно в сравнении с механическими способами, а отношение Wопт/Wопт1=3 относится к высшей степени крепким и очень крепким горным породам (f=20), выше которого нет в квалификации. В качестве наименее прочной горной породы для электроимпульсного разрушения выбран песчаник с f=5 и относительно его определена степень увеличения Wопт для других горных пород с Wоптi, то есть определяется отношение Wоптi/Wопт1, где Wоптi — оптимальная энергия для разрушения за один импульс рассматриваемой горной породы, a Wопт1 — песчаника. В таблице 1 даны значения этого отношения для указанных выше горных пород. Между коэффициентом f и отношением Wоптi/Wопт1 существует жесткая корреляционная зависимость, которая описывается выражением
Это выражение позволяет определить отношение Wоптi/Wопт1 для любой горной породы с коэффициентом f4, поскольку f — табличные значения для различных горных пород. В результате расчетов по (3) отношение Wоптi/ Wопт1 находится в диапазоне (0,9
3,0).
На основании вышесказанного целесообразно уменьшить энергию, запасаемую генератором импульсов, до W3, поскольку используемые для целей электроимпульсного разрушения горных пород генераторы имеют большие массогабаритные параметры и большую капиталоемкость. Предлагаемое нами решение позволяет уменьшить эту энергию в несколько раз, исходя из того, что m 3 и 86 кг. Таким образом, объем генератора импульсов уменьшился в 38 раз, а вес генератора импульсов — в 8,4 раза по сравнению с прототипом.
Электроимпульсный способ разрушения горных пород перемещающимся двухстержневым электродным устройством, отличающийся тем, что шаг перемещения электродов устройства между двумя электрическими импульсами выбирают из следующего условия:
где m — шаг перемещения электродов устройства, мм;
W3 — энергия, запасаемая источником импульсов, Дж;
L — межэлектродный промежуток, мм;
Wonml — оптимальная энергия разрушения за один импульс для горной породы с коэффициентом по Протодьяконову, равным 5, Дж;
n — число импульсов на межэлектродном промежутке.
PD4A — Изменение наименования обладателя патента СССР или патента Российской Федерации на изобретение
(73) Новое наименование патентообладателя:Государственное образовательное учреждение высшего профессионального образования «Томский политехнический университет» (RU)
Адрес для переписки:634050, г. Томск, пр. Ленина, 30, Государственное образовательное учреждение высшего профессионального образования «Томский политехнический университет»
Источник
Электроимпульсный способ бурения скважин в горных породах
Электроимпульсный способ бурения скважин в горных породах.
Электроимпульсный способ бурения скважин в горных породах является принципиально новым способом разрушения горных пород и бурения скважин. Данный способ имеет высокий КПД преобразования электрической энергии в механическую и высокую скорость бурения. Например, 2 м/час при бурении скважины диаметром 380-400 мм в граните. Электроимпульсным способом могут быть разрушены практически все горные породы.
Описание:
Электроимпульсный способ бурения скважин в горных породах является принципиально новым способом разрушения горных пород и бурения скважин диаметром более 300 мм.
При воздействии импульсного высокого напряжения микросекундной длительности на горную породу, расположенную в электроизоляционной жидкости (в том числе и в воде), происходит внедрение канала электрического разряда в горную породу. Далее в этом канале за время 10 -6 – 10 -5 с выделяется электрическая энергия, запасенная во внешнем высоковольтном генераторе импульсных напряжений (ГИН). При этом происходит электровзрыв в горной породе. Рабочим телом (инструментом), разрушающим горную породу, является плазма канала разряда, которая не изменяет своих характеристик от разряда к разряду, т. е. не изнашивается и не стареет.
Электроимпульсным способом могут быть разрушены практически все горные породы, исключая породы с очень высокой (металлической) электропроводностью.
Преобразование электрической энергии в механическую работу разрушения происходит непосредственно в горной породе без промежуточных ступеней трансформации. Разрушение горной породы осуществляется крупным сколом. Это обеспечивает высокий КПД перехода энергии накопителя в работу разрушения, низкую энергоемкость и высокую производительность отбойки горной породы на забое скважины.
Особенностью электроимпульсного способа бурения является существенное возрастание эффективности проходки с увеличением диаметра скважины (бурового наконечника) при условии оптимизации режима бурения.
Электроимпульсный способ бурения позволяет бурить скважины с отбором керна, возможно бурение скважин любой формы. Практически было выполнено бурение скважин квадратного, эллипсообразного сечений. Априори возможно эффективное искривление скважин и многозабойное бурение.
Схемы промывки скважин при электроимпульсном бурении существенно не отличаются от традиционных для механических способов бурения . Устье скважины оборудуется кондуктором. Циркуляция жидкости обеспечивается насосом . Вынос шлама осуществляется той же жидкостью, в которой происходит разрушение горной породы на забое скважины. Шлам осаждается в отстойниках или удаляется при помощи циклонов. В качестве промывочной жидкости применяются различные растворы на нефтяной основе. Возможно бурение на технической воде и растворах на водной основе.
Преимущества:
– высокая скорость бурения и слабая ее зависимость от прочности горных пород (например, 2 м/час при бурении скважины диаметром 380-400 мм в образце гранита),
– низкая стоимость буровой коронки и малый износ ее электродов, которые изготавливаются из обычной стали,
– отсутствие вращающегося бурового снаряда (в качестве рабочего инструмента используется электрическая искра),
– высокая производительность проходки скважин за счет уменьшения количества спускоподъемных операций,
– электроимпульсный способ бурения имеет высокий КПД преобразования электрической энергии в механическую,
– низкая энергоемкость,
– высокая производительность отбойки горной породы на забое скважины и при разработке ее диаметра,
– конструкция электродной системы обеспечивает автоматическое регулирование последовательности разработки забоя скважины и разработку ее диаметра, что исключает необходимость вращения бурового наконечника и использования других видов механических нагрузок,
– износ бурового наконечника незначителен, что позволяет проходить сотни метров скважин без смены бурового наконечника. Все это позволяет изготавливать элементы бурового снаряда из рядовых сталей,
– электроимпульсный способ бурения обеспечивает бурение скважин различной формы, в т.ч. с отбором керна,
– возможно эффективное искривление скважин и многозабойное бурение.
Конструкция:
Упрощенная технологическая схема электроимпульсного бурения скважин включает внешний источник- генератор высокого импульсного напряжения, буровой снаряд, спускоподъемное устройство, систему промывки скважины.
Буровой снаряд состоит из бурового наконечника, колонны бурильных труб и высоковольтного ввода.
Передача импульсов высокого напряжения от внешнего высоковольтного генератора импульсных напряжений к буровому наконечнику осуществляется через высоковольтный ввод по центральному токопроводу, расположенному коаксиально в колонне бурильных труб, который зафиксирован внутри колонны с помощью изоляторов.
Буровой наконечник состоит из совокупности высоковольтных (1) и заземленных (2) электродов, объединенных в единую конструкцию, но электрически изолированных друг от друга.
Источник