- КАК РАССЧИТАТЬ ЭДС ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА
- Что такое Э.Д.С. и от чего она зависит
- Стандартные электродные потенциалы
- Как устроен и как работает гальванический элемент с водородным электродом
- ЭДС гальванического элемента с водородным электродом
- Э.Д.С. гальванического элемента определяется по формуле, учитывающей электродные потенциалы участников процесса
- Ряд напряжений металлов. Что это такое и каково его значение
- Примеры вычислений Э.Д.С. гальванического элемента и электродных потенциалов
- Электродвижущая сила гальванического элемента (ЭДС)
КАК РАССЧИТАТЬ ЭДС ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА
Э.Д.С. гальванического элемента определяется по формуле, применение которой рассмотрим в данной статье.
Гальванический элемент является прибором, который позволяет при посредстве химической реакции получить электрическую энергию. А происходит это потому, что один металл готов отдать свои электроны другому, тот же, в свою очередь, их принять.
Но что обеспечивает такую готовность, какая сила заставляет эти электроны перемещаться?
Для сравнения способности одного металла отдавать свои электроны другому измеряют и рассчитывают электродвижущую силу (обозначим ее как Э.Д.С.)
Что такое Э.Д.С. и от чего она зависит
Сила, позволяющая перемещаться электронам по цепи в гальваническом элементе, называется электродвижущей силой (E) , которая в данном случае означает то же, что и напряжение, и потенциал. Поэтому Э.Д.С. измеряется в вольтах.
Вспомним, что 1 вольт (В) представляет собой электродвижущую силу, которая позволяет заряду в 1 кулон (Кл) приобрести энергию в 1 джоуль (Дж).
ЭДС гальванического элемента определяется многими факторами:
— проводимым в элементе химическим процессом;
— концентрацией участников процесса (как реагентов, так и продуктов);
Если гальванический элемент работает в стандартных условиях, то его Э.Д.С. называется стандартной и обозначается Е°.
Стандартные электродные потенциалы
Еще со времен Галилея известно, что все в мире относительно. С тех пор любые события, процессы и явления мы можем рассматривать относительно других событий, процессов или явлений.
Чтобы понять, какова же Э.Д.С. конкретного металла, нужно сравнить ее с такой Э.Д.С., величина которой нам наверняка известна. Для этого был составлен гальванический элемент с газообразным водородом в качестве электрода.
Как устроен и как работает гальванический элемент с водородным электродом
Значение потенциала водородного электрода, с которым будут сравниваться величины измеряемых потенциалов электродов гальванического элемента, условно принимается на ноль.
Конечно же сам водород подключить к цепи мы не можем, так как это газообразное вещество.
Итак, в цепь включена тонкая платиновая Pt пластинка, имеющая дополнительное покрытие из платины, осажденной на ее поверхности электролитическим путем. Здесь адсорбируется газообразный водород, который дополнительно удерживается стеклянной колбой. Последняя же заполнена электролитом: 2н. раствором серной кислоты H2SO4. Кроме того, сюда из баллона подается водород H2.
Вторая часть гальванического элемента, как обычно, представлена цинковой пластинкой (анод), погруженной в раствор соли этого же металла, например, сульфата цинка ZnSO4 . Электроны анода после замыкания цепи переходят в катодное пространство и обеспечивают там восстановление ионов водорода H + :
Схематично рассмотренный гальванический элемент записывают так:
После замыкания цепи стрелка прибора покажет величину потенциала 0,76 В.
ЭДС гальванического элемента с водородным электродом
Итак. Стрелка вольтметра остановилась на значении 0,76 В. Это и есть величина Э.Д.С. гальванического элемента, устройство которого мы рассмотрели.
Поскольку в гальваническом элементе всегда одновременно протекают два противоположных процесса: окисление и восстановление, то Э.Д.С. элемента будет представлена суммой двух потенциалов: окислительного и восстановительного соответственно
Поскольку в ходе процесса окисляется цинк, посчитанное (и измеренное) значение Э.Д.С. будет относиться не столько ко всему элементу, сколько к цинковому аноду.
Именно таким же образом, имея в распоряжении стандартный водородный электрод, были получены значения других стандартных электродных потенциалов.
Э.Д.С. гальванического элемента определяется по формуле, учитывающей электродные потенциалы участников процесса
Возможны случаи, когда электрод в одном гальваническом элементе является анодом, а в другом (в паре с другим металлом) катодом. Иными словами, в зависимости от ситуации он может как окисляться, так и восстанавливаться. Какой же электродный потенциал будет иметь металл?
В таких ситуациях работает правило:
потенциалы окислительного и восстановительного процессов имеют одинаковое численное значение и противоположны по знаку
Например, для цинка:
Важно отметить, что в справочных таблицах стандартных электродных потенциалов принято отображать только восстановительные процессы. Поэтому, если электрод, значение Э.Д.С. которого вам надо взять из такой таблицы, является участником окислительного процесса, вы находите в ней значение Э.Д.С. для него, как для участника восстановительного процесса, и меняете знак на противоположный.
Итак, в самом общем случае Э.Д.С. гальванического элемента определяется по формуле:
Необходимо учесть, что
Э.Д.С. гальванического элемента всегда положительна
Определим Э.Д.С. гальванического элемента, состоящего из медного и цинкового электродов, погруженных в растворы их солей:
Для вычисления воспользуемся справочной таблицей стандартных электродных потенциалов металлов и формулой для расчета Э.Д.С., учитывая, что из двух значений потенциалов, меньшее будет соответствовать окислительным процессам на аноде, а большее – восстановительным процессам на катоде.
По данным таблицы восстановительный потенциал цинка равен -0,763 В. В данном процессе цинк окисляется, значит, его окислительный потенциал составляет +0,763 В. Медь восстанавливается, ее потенциал равен +0,337 В.
Ряд напряжений металлов. Что это такое и каково его значение
Если измерить указанным выше образом значения стандартных электродных потенциалов металлов и расположить их в порядке возрастания, то получится знаменитый ряд напряжений металлов (не совсем верный термин). Лучше его называть рядом стандартных электродных потенциалов металлов. Он имеет еще несколько названий: электрохимический ряд активности металлов, ряд Бекетова. В нем кроме металлов присутствует единственный неметалл водород. Надеемся, теперь понятно, почему.
Li Rb K Cs Ba Sr Ca Na Mg Be Al Mn Zn Cr Fe Cd Co Ni Sn Pb (H) Cu Hg Ag Pt Au
Каково же значение данного ряда?
По величинам стандартных электродных потенциалов можно предположить, насколько ярко выражены те или иные свойства соответствующих металлов:
1) Чем меньше величина потенциала, тем более активным является металл . Так, ряд начинается литием. Величина его потенциала Е°=-3,045 В. Это самое маленькое значение среди всех остальных. И действительно, литий очень активный металл. Он легко окисляется и трудно восстанавливается из своего иона.
2) Все металлы, стоящие в данном ряду левее водорода (т.е. имеющие отрицательное значение потенциала) вытесняют его из разбавленных кислот (кислот, подобных соляной, серной).
3) Каждый предыдущий металл ряда вытесняет все последующие из растворов их солей. Например:
Этот вывод можно подтвердить расчетами:
А вот такая реакция не возможна:
И это также легко подтверждается вычислением Э.Д.С. предполагаемого окислительно-восстановительного процесса:
Полученное отрицательное значение Э.Д.С. говорит о том, что переход электронов с меди на железо не возможен.
4) Если построить из металлов данного ряда гальванический элемент, то его Э.Д.С. будет тем больше, чем больше разность стандартных электродных потенциалов этих металлов.
Например, какой окислительно-восстановительный процесс будет идти эффективнее: вытеснение железа из его соли магнием или цинком? Для ответа на этот вопрос необходимо посчитать Э.Д.С. обоих процессов и сравнить полученные значения:
В обоих случаях Э.Д.С. положительна. Значит, процессы возможны. Однако, взаимодействие сульфата железа (II) с магнием более эффективно, чем с цинком почти в 6 раз.
Примеры вычислений Э.Д.С. гальванического элемента и электродных потенциалов
Разберем еще несколько примеров, в которых применяется формула, по которой определяется Э.Д.С. гальванического элемента.
Задача 1. Рассчитайте, будет ли протекать реакция при погружении пластинки железа в 1М раствор сульфата никеля.
Так как значение Э.Д.С. предполагаемой окислительно-восстановительной реакции положительное, то такая реакция возможна.
Задача 2. Рассчитайте Э.Д.С., укажите направление движения электронов в имеющейся комбинации электродов:
Окисляется свинцовый Pb анод, его электроны будут переходить на серебряный Ag катод.
Задача 3. Подтвердите расчетом, будет ли металлический никель растворяться: а) в 2М растворе серной кислоты; б) в растворе сульфата калия с той же активностью ионов.
Задача 4. Определите возможность протекания в водном растворе реакции между хлором и хлоридом железа (II).
Задача 5. Вычислите стандартную Э.Д.С. гальванического элемента, в котором протекает реакция:
Важный вывод из этой задачи:
значение Э.Д.С. гальванического элемента зависит от концентраций участников окислительно-восстановительного процесса, но не зависит от их количеств.
Количество вещества йода, которое мы умножили в окислительной полуреакции на три для соблюдения электронного баланса, не имеет значения, и поэтому величину стандартного электродного потенциала этой полуреакции на три умножать не нужно. Так же поступают во всех подобных случаях.
Таким образом, ЭДС гальванического элемента определяется по формуле, учитывающей значения стандартных электродных потенциалов. Она позволяет определить эффективность окислительно-восстановительного процесса, как в гальваническом элементе, так и при взаимодействии металла с раствором соли другого металла.
Источник
Электродвижущая сила гальванического элемента (ЭДС)
Электрическая работа, получаемая с помощью гальванического элемента, будет максимальной, когда элемент работает в условиях, наиболее близких к обратимым. Максимальная разность потенциалов электродов данного гальванического элемента, которая определяется в условиях равновесия, называется его электродвижущей силой (ЭДС). Она равна разности равновесных потенциалов катода и анода элемента.
При стандартных условиях:
ЭДС 0 = Dj 0 = j 0 катода -j 0 анода . (7.3)
Пример 10. Вычислить ЭДС гальванического элемента, составленного из магниевого и свинцового электродов, в котором [Mg 2+ ] = 0,1 M; [Pb 2+ ] = 0,001 M.
Решение. j 0 Mg 2+ /Mg = -2,37 В; j 0 Pb 2+ /Pb = -0,13 B (табл. 7.1); j 0 магниевого электрода меньше, т.е. Mg является более активным металлом, поэтому в гальваническом элементе магний будет анодом, а свинец — катодом.
На электродах будут протекать следующие процессы:
К: Pb 2+ + 2e = Pb 0 .
Схема гальванического элемента записывается так: Mg½Mg 2+ ?Pb 2+ ½Pb.
Для расчета ЭДС необходимо найти электродные потенциалы.
Согласно уравнению (7.2):
= j 0 +
-2,37 + 0,0295 . lg 0,1 = -2,4 B;
= -0,13 + 0,0295 . lg 0,001 = -0,13 + 0,0295·(-3) = -0,22 В.
ЭДС = j кат — j ан = -0,25 — ( -2,4) = 2,15 В.
Пример 11. Определить ЭДС гальванического элемента, составленного из серебряных электродов, опущенных в 0,0001 М и 0,1 М растворы AgNO3.
Решение. Гальванический элемент может быть составлен не только из различных, но и одинаковых электродов, погруженных в растворы одного и того же электролита различной концентрации (концентрационные элементы). Найдем электродные потенциалы по формуле Нернста (7.2):
j 1 Ag+ / Ag = j 0 + ×lg[Ag + ] = 0,8 + 0,059 × lg0,001 = 0,8 + 0,059×(-3) = 0,62 В,
j 2 Ag+ / Ag = 0,8 + 0,059×lg0,1 = 0,8 — 0,059 = 0,74 В.
Поскольку j 1 2 , электрод, опущенный в 0,001 М раствор, будет являться анодом:
ЭДС = j кат — j ан = 0,74 — 0,62 = 0,12 В.
Схема такого гальванического элемента записывается так:
Как уже было показано на примере водородного электрода, электроды, а следовательно, и гальванические элементы могут быть созданы не только для реакции окисления-восстановления металлов, но и для любых веществ и окислительно-восстановительных реакций, происходящих в растворах или расплавах.
Например, для реакции в растворе:
процессы окисления и восстановления можно разделить в виде полуреакций:
на аноде: 5 ½ SO3 2 — + H20 = SO4 2 — + 2H + + 2? ; (0,17 В),
на катоде: 2 ½ MnO4 — + 8H + + 5e = Mn 2+ + 4H2O (1,51 В).
Суммируем:
2MnO4 — + 5SO3 2 — + 6H + + 10? = 2Mn 2+ + 5SO4 2 — + 3H2O + 10?.
Токообразующая реакция:
Для осуществления таких реакций обычно используют катализатор, который одновременно является проводником электронов, например платину (рис. 7.3).
Рис. 7.3. Гальванический элемент на окислительно-восстановительной реакции в растворе
Схема гальванического элемента:
Pt | SO3 2 — , SO4 2 — , H + || MnO4 — , Mn 2+ , H + | Pt .
Значения стандартных электродных потенциалов полуреакций приводятся в справочниках.
ЭДС такого элемента при стандартных условиях можно определить как разность потенциалов для полуреакций восстановления (окислителя) и окисления (восстановителя).
ЭДС = Dj 0 = j 0 (MnО4 — / Mn 2+ ) — j 0 (SO4 2 — / SO3 2 — ) = 1,51 — 0,17 = 1,34 B.
Если при этом ЭДС положительна, то реакция возможна при стандартных условиях, так как DG реакции и электрическая работа (ЭДС) связаны между собой соотношением:
где F — постоянная Фарадея (заряд, переносимый одним молем элементарных зарядов (F = 96485, или »96500Кул/моль экв);
n — заряд, переносимый одной частицей (для Zn 2+ и Cu 2+ n = 2);
Таким образом, разность потенциалов на электродах можно не только непосредственно измерить, но и вычислить из чисто химических экспериментальных данных. В случае нестандартных условий потенциал электрода и ЭДС элемента рассчитывается по формуле Нернста (7.1).
Например, для рассматриваемой реакции:
,
(n = 10). Так как концентрации реагентов находятся под знаком логарифма, то зависимость Dj от них слабая.
Источник