Электродуговой способ производства стали

Способы получения стали

Аннотация

Сталь производится бессемеровским, мартеновским, кислородно-конверторным, электродуговым, электрочастотным и тигельным процессами. И в кислотном бессемеровском и в основном бессемеровском (или томасовском) процессах обработка литого чугуна в чушках, происходит путем продувки воздухом для выдувания через него в овальном сосуде, известном как конвертер, 15-25-тонной вместимости. В мартеновском процессе, как кислотном, так и основном, необходимое для плавления тепло поставляет нефть или газ. И газ и воздух предварительно подогреваются регенераторами, два на каждой стороне печи, альтернативно нагретой отработанными газами. Регенераторы – камеры, заполненные кирпичной кладкой. Высокое содержание азота стали Бессемера является недостатком для определенных областей применения холодной штамповки и континентальные работы в последнее время были направлены на изменение процессов, в которых кислород заменяется воздухом.

Сталь производится бессемеровским, мартеновским, основная кислородно-конверторным, электродуговым, электровысокочастотным и тигельным способами.

Тигельные и высокочастотные методы

Тигельный процесс Хатсмена был заменен высокочастотной индуктивной печью, в которой тепло вырабатывается в самом металле непосредственно вихревыми токами, вызванными магнитным полем, создаваемым переменным током, который проходит вокруг охлажденной водой катушки тигля. Потоки вихря увеличиваются с квадратом частоты, и необходим входной поток, который чередуется от 500 до 2000 герц. Поскольку частота увеличивается, потоки вихря, как правило, перемещаются ближе и ближе к поверхности шихты (то есть мелкое проникновение). Высокая температура шихты зависит от площади поперечного сечения, которая проводит ток, и большие печи используют частоты достаточно низкие, чтобы получить соответствующее проникновение тока.

Автоматическая циркуляция расплава в вертикальном направлении, за счет вихревых токов, способствует однородности анализа. Загрязнение печными газами устранено и шихта от 1 до 5 тонн, может быть расплавлена с экономической выгодой. Следовательно, эти электрические печи используются, для производства высококачественных сталей, таких как шарикоподшипниковые, нержавеющие, магнитные, сталей для штампов и инструментальных сталей.

Читайте также:  Определить действительную величину треугольника способом перемены плоскостей проекций

Рисунок 1. Печи для изготовления чугунных чушек и стали. RH сторона мартеновской печи показывает использование мазута вместо газа

Кислотные и основные стали

Остальные методы производства стали осуществляются путем удаления примесей из чугуна или чугунных чушек и стального лома. Удаленные примеси, однако, зависят от того, какие кислоты (кремнистая) или основная используется для шлака. Кислотный шлак требует использования кислотной футеровки печи (кремнезема); томасшлак, основной футеровки магнезитом или доломитом. Кремниевая кислота, марганец и углерод удаляют только путем окисления, поэтому сырье не должно содержать фосфор и серу в количествах, превышающих допустимые в готовой стали.

В основных процессах кремний, марганец, углерод, фосфор и сера удаляются из шихты, но обычно сырье имеет низкое содержание кремния и высокое содержание фосфора. Чтобы удалить фосфор, ванна металла должна быть окислена до большей степени, чем в соответствующем процессе окисления, и конечное качество стали зависит в значительной степени от степени этого окисления, прежде чем ферромарганец, ферросилиций, ферроалюминий – удалят необходимые оксиды железа и сформирует другие нерастворимые окиси, которые производят неметаллические включения, если они не будут удалены из расплава:

2Al + 3FeO (растворимый) = 3Fe + Al 2 O 3 (твердый)

В кислотных процессах раскисление может происходить в печах, оставляя достаточно времени для поднятия включений в шлак и удаления перед разливкой. В то время как в основных печах, раскисление редко проводится в присутствии шлака, так как фосфор может вернуться в металл. Раскисление металла часто происходит в ковше, оставляя лишь короткий промежуток времени для раскисления продуктов, которые будут удалены. По этим причинам кислотную сталь считают лучше основной для определенных целей, таких как кузнечные слитки и сталь шарикоподшипника. Введение вакуумной дегазации ускорило снижение кислотных процессов.

Бессемеровская сталь

И в кислотном бессемеровском и в основном бессемеровском (или томасовском) процессах обработка литого чугуна в чушках, происходит путем продувки воздухом через него в овальном сосуде, известном как конвертер, 15-25-тонной вместимости (рис.1). Окисление примесей доводит шихту к подходящей температуре, которая зависит от состава сырья для высокой температуры: 2% кремния в кислотном и фосфора 1,5-2 % в основном процессе, необходимы для увеличения температуры. Выдувание шихты, которое вызывает интенсивное пламя в горловине конвертера, занимает приблизительно 25 минут, и такой короткий промежуток времени делает контроль процесса немного трудным.

От кислотного бессемеровского процесса отказались в пользу мартеновского процесса, в основном из-за экономических факторов, которые, в свою очередь были убраны основной электродуговой печью в сочетании с вакуумной дегазацией.

Основной бессемеровский процесс часто для того, чтобы сделать из чугунных чушек дешевый класс стали, например, для листов корабля, структурных секций. Для изготовления стальных отливок известной модификации, используется конвертер, в котором воздух попадает на поверхность металла от стороны фурмы, а не со стороны основания. Сырье обычно плавится в горловине и взвешенное количество, подается конвертер.

Мартеновские процессы

В процессе Сименса, как кислотном, так и основном, необходима высокая температура для плавления, которая поставляется нефтью или газом. Но газ и воздух предварительно подогреваются регенераторами, двумя на каждой стороне печи, альтернативно нагретой отработанными газами. Регенераторы – камеры, заполненные кладкой блоками, кирпичом и их чередованием.

У печей есть подобный блюдцу горн, емкость которого изменяется от 600 тонн для неподвижного состояния до 200 тонн для наклона печи (рис.1). Сырье состоит по существу из чугунных чушек (холодных или расплавленных) и лома, вместе с известью в основном процессе. Окислению примесей железных руд способствует продувка кислорода, подаваемая в расплав. Время варьируется от 6 до 14 часов, и контролировать, поэтому, намного легче, чем в случае бессемеровского процесса.

Мартеновский процесс использовался для получения дешевых сортов стали, но есть тенденция к замене ОН печей крупными дуговыми печами с использованием одного процесса наведения шлака специально для плавления лома и вместе с вакуумной дегазацией в некоторых случаях.

Электродуговой процесс

Тепло, требуемое в этом процессе, создается электрической дугой, находящейся между угольными электродами и металлической ванной (рис.1). Обычно, шихта из градуированного стального лома плавится под окисленным шлаком для удаления фосфора. Нечистый шлак удаляется путем наклона печи. Второй шлак используется для удаления серы и диоксидов металла в печи. Это приводит к высокой степени очистки, и высококачественная сталь может быть сделана при чрезвычайно высоких температурах. Этот процесс широко используется для изготовления высоколегированных сталей, таких как нержавеющая, жаростойкая и быстрорежущая стали.

Продувка кислородом часто используется для того, чтобы удалить углерод в присутствии хрома и позволяет использовать лом из нержавеющей стали. Содержание азота в сталях, сделанных бессемеровским и электродуговым процессами, составляет приблизительно 0,01-0,25 % по сравнению с приблизительно 0,002-0,008 % в мартеновских сталях.

Кислородные процессы

Высокое содержание азота стали Бессемера является недостатком для определенных областей применения холодной штамповки и континентальные работы в последнее время были направлены на изменение процессов, в которых кислород заменяется воздухом. В Австрии LID процесс (Линц-Донавиц) преобразовывает низкий чугун в чушках с содержанием фосфора в сталь главным выдуванием кислородным копьем, используя основной футерованный сосуд (рис.2 b). Чтобы избежать чрезмерного тепла добавляется руда. Высококачественная сталь производится с низким содержанием водорода и азота (0,002 %). Дальнейшая модификация процесса заключается в добавлении порошка извести в струю кислорода (процесс OLP), если в используемых чугунных чушках высокое содержание фосфора.

Kaldo (шведский) процесс использует верхнюю продувку кислородом вместе с основным выровненным вращением (30 об/мин) печи, чтобы получить эффективное перемешивание (рис.2 a). Использование кислорода позволяет одновременное удаление углерода и фосфора (1,85 %) из чугунных чушек. Известь и руда добавляются. Немецкий роторный процесс использует вращающую печь с двумя кислородными соплами, одно в металле и одно над ним (рис.2 c). Использование кислорода с паром (для снижения температуры) в традиционном основном бессемеровском процессе также широко используется для получения сталей с низким содержанием азота. Эти новые технологии производства стали с низкими процентами N, S, P, которые довольно конкурентоспособны с качеством мартеновской стали.

Другие процессы, которые развиваются, являются процессом топливо–кислород–лом, процессом FOS, и процесс распыляющего сталеварение, который состоит в прохождении железа через кольцо, периферии которого предоставляют сопла, через которые кислород и потоки расположены таким способом как, чтобы дробить железо, большую поверхность, которая обеспечивает, таким образом, чрезвычайно быструю химическую очистку и преобразование в сталь.

Вакуумная дегазация также используется для специальных сплавов. Около 14 процессов можно разделить на поток, ковш, изложницы и циркуляция (например, DH и RH) методы дегазации, рис.3. Вакуум в значительной степени удаляет водород, атмосферные и летучие примеси (Sn, Cu, Pb, Sb), снижает содержание металлической окиси C-O в реакции и удаляет окиси и позволяет контролировать состав расплава, чтобы назначить отклонения. Чистый произведенный металл имеет последовательное высокое качество с хорошими свойствами в поперечном сечении проката. Подшипниковые стали значительно улучшили показатели усталости и понизили содержание углерода в нержавеющих сталях.

Рисунок 3. Методы дегазации расплавленной стали

Плавка вакуумом и ESR. Авиапромышленность постоянно требует новые стали с большей однородностью и воспроизводимостью свойств с более низким содержанием кислорода и серы. Легированные стали имеют большую склонность к макросегрегации, и существуют значительные трудности в снижении неметаллических включений и точного управления анализа реактивных элементов, таких как Ti, Al, B. Эта проблема привела к использованию трех процессов плавления:

  • вакуумная индукционная плавка в резервуаре производства сплавов высокого качества (основа Ni и Co), в некоторых случаях для дальнейшей переплавки для литья по выплавляемым моделям. Чистые материалы используются, а неметаллические включения могут быть удалены.
  • вакуумно-дуговой процесс переплава плавящимся электродом (рис.4) первоначально использовал для титана, для устранения водорода, и V сегрегации, а также для больших включений силиката. Это происходит из-за способа отвердевания. Движущиеся части в авиадвигателях сделаны этим процессом, из-за необходимости в высокой чистоте, однородности свойств, прочности и отсутствия водорода и неметаллических включений.
  • электрошлаковое рафинирование (ESR) Этот процесс, который является больше формой от оригинального сварочного процесса, повторно плавит предварительно сформированный электрод сплава, используя электрическое сопротивление расплавленного шлака как источника тепла (рис.5). Слой шлака вокруг слитка поддерживает вертикальное однонаправленное затвердевание с основы. Элементы трампа не удалены, и свинец может быть подобран из шлака.

Рисунок 4. Типичная вакуумная печь дугового переплав

Источник

Выплавка стали в электродуговой печи

Устройство дуговой сталеплавильной печи

Дуговая сталеплавильная печь благодаря своим преимуществам предназначена, в основном, для производства легированных высококачественных сталей — коррозионностойких, инструментальных, конструкционных, электротехнических, жаропрочных и др., а также различных сплавов.

Дуговая сталеплавильная печь состоит из металлического корпуса в виде кожуха, как правило, цилиндрической формы со сферическим днищем (рис. 7).

1 — под; 2 — реечный механизм для поворота печи; 3 — твёрдая шихта; 4 — кусок кокса; 5 — электроды; 6 — электродержатели с механизмом для подъёма и опускания: 7 — свод; 8 — загрузочное окно; 9 — расплавленный шлак; 10 — расплавленный металл
Рис. 7 — Трёхфазная электродуговая печь

Изнутри кожух футерован высокоогнеупорными материалами. Плавильное пространство печи сверху перекрывается съемным сводом, огнеупорная кладка которого выполнена в специальном сводовом кольце. В стенах печи имеются одно или два рабочих окна и одно выпускное отверстие с желобом для слива металла и шлака в ковш. Рабочие окна служат для загрузки шлакообразующих, руды, ферросплавов и для ряда технологических операций — спуска шлака, взятия проб металла и шлака.

Дуговая печь опирается на два опорных сегмента — люльки, с помощью которых печь может наклоняться в сторону рабочего окна или выпускного отверстия. Наклон печи осуществляется при помощи механизма наклона с электрическим или гидравлическим приводом. Для загрузки шихты в печь свод обычно поднимают к полупорталу и вместе с электродами отворачивают в сторону сливного желоба. Шихта в плавильное пространство опускается с помощью специальной корзины с открывающимся дном. В эти корзины (бадьи) вся шихта укладывается в определенном порядке на шихтовом участке цеха. К моменту завалки загруженная корзина подается к печи с помощью мостового крана, и после отвода от печи свода корзина опускается в плавильное пространство. Замок, закрывающий днище корзины, выдергивается, и корзина с помощью крана выводится из печи. При этом, благодаря раскрытию дна корзины, вся содержащаяся в ней шихта остается на подине печи.

Электрический ток в плавильное пространство подводится при помощи трех симметрично расположенных электродов, которые опускаются через свод. Для этого в своде имеются отверстия, снабженные водоохлаждаемыми металлическими коробками — экономайзерами. Каждый электрод зажимается электрододержателем, скрепленным при помощи рукава, выполненного в виде толстостенной трубы или сварной балки, с подвижной стойкой. Для подвода тока к электродам используются охлаждаемые гибкие кабели и водоохлаждаемые медные трубы.

Дуговые печи строят различной емкости (до 250 т) и с трансформаторами мощностью до 125000 кВА.

Источником тепла в дуговой печи является электрическая дуга, возникающая между электродами и жидким металлом или шихтой при приложении к электродам электрического тока необходимой силы. Дуга представляет собой поток электронов, ионизированных газов и паров металла и шлака. Температура электрической дуги превышает 3000 °С. Дуговые печи работают на переменном токе.

Применяют графитированные электроды, изготавливаемые из малозольных углеродных материалов, нефтяного пекового и сланцевого кокса и связующих — каменноугольного пека и смолы. Электроды прессуют и затем обжигают в газовых (1300 °С), а затем в электрических печах при более высоких температурах (2500-3000°С). После этого их механически обрабатывают для придания формы цилиндра. Работающий на печи электрод получают соединением нескольких стандартных секций с помощью ниппеля. По мере износа нижней части электрода проводится «перепуск» его в объем печи с одновременным наращиванием следующей секции, если это необходимо. Наращивание осуществляется на специальном стенде или на печи, вручную. В последнее время, с целью уменьшения расхода электродов верхняя несущая часть изготавливается из меди или нержавеющей стали и охлаждается водой (водоохлаждаемые электроды). Это позволяет снизить расход электродов в 2-3 раза.

Технология плавки в основной дуговой электропечи

Шихта при плавке с полным окислением состоит, главным образом, из стального лома и чугуна, а также шлакообразующих (известь, известняк, плавиковый шпат, шамотный бой).

Плавка включает следующие основные периоды — заправка печи, загрузка шихты, плавление, окислительный период, восстановительный период, выпуск.

Заправка печи выполняется для поддержания футеровки плавильного пространства в рабочем состоянии. Для этого после выпуска очередной плавки на поврежденные места подины и откосов — места перехода подины печи в стены — с помощью заправочной машины забрасывают сухой магнезитовый порошок, а в случае больших повреждений — порошок с добавками пека или смолы.

Завалка шихты начинается сразу после окончания заправки. Завалку шихты осуществляют сверху с помощью загрузочной корзины (бадьи).

Плавление. После окончания завалки свод с электродами устанавливают на печь, электроды опускают и включают ток. Под действием высокой температуры электрической дуги шихта плавится сначала под электродами, жидкий металл стекает вниз и накапливается в центральной части подины. Постепенно происходит полное расплавление шихты. Для ускорения плавления куски переплавившейся шихты с откосов печи сталкивают в зону электрических дуг. Характерной особенностью первого периода плавления является проплавление «колодцев» в шихте, в которые опускают электроды (или одного «колодца» в сверхмощных печах). В период плавления происходит образование шлака как за счет присадок извести, так и за счет окисления элементов, входящих в состав шихты. За время плавления полностью окисляется кремний, 50-60 % марганца, частично окисляются углерод и железо, окисляется фосфор.

Окислительный период плавки предназначен для уменьшения содержания в металле фосфора до 0,01- 0,015 %, уменьшения содержания в металле водорода и азота, нагрева металла до требуемой температуры (на 120-130°С выше температуры плавления). Для окисления примесей используют твердые окислители (железная руда, агломерат), а также газообразный кислород. Присадки руды или продувка кислородом вызывают интенсивное окисление углерода, и выделяющиеся при этом пузырьки СО создают активное кипение ванны. Это способствует быстрому нагреву металла, удалению газов — водорода и азота, а также неметаллических включений. Окислительный период заканчивается, когда содержание углерода становится несколько ниже заданного предела, содержание фосфора ниже 0,01 %. В конце окислительного периода полностью удаляют из печи шлак.

Восстановительный период плавки имеет целью раскисление металла, удаление серы, доведение химического состава стали до заданного, регулирование температуры. Все эти задачи решаются параллельно в течение всего восстановительного периода. После полного удаления окислительного шлака в печь присаживают шлакообразующие смеси вместе с раскислителями, т. е. наводится новый шлак (карбидный или белый). В качестве раскислителей обычно используют ферромарганец, ферросилиций, алюминий. В печь присаживают также легирующие добавки для введения в металл необходимых легирующих элементов.

После этого металл выпускают из печи в установленный под желобом сталеразливочный ковш, для чего печь наклоняют в сторону сталевыпускного отверстия. При необходимости в ковше можно проводить дополнительное раскисление и легирование стали. Так осуществляется двушлаковый процесс выплавки.

Плавка на шихте из легированных отходов основана на переплаве без окисления. Прежде всего в таком процессе нет необходимости окислять углерод и фосфор, и железную руду в ванну не вводят. В связи с этим в шихте содержание фосфора не должно быть выше допустимого предела по этому элементу в готовой стали. Учитывая, что в процессе переплава в металле растворяется часть углерода электродов, начальное содержание углерода в ванне должно быть ниже, чем в готовой стали примерно на 0,1 %. Для дегазирующего барботирования ванны в качестве шлакообразующего компонента используют не известь, а известняк, разложение которого сопровождается выделением пузырей диоксида углерода. Шихта составляется только из отходов легированных сталей. При составлении шихты стремятся использовать максимальное количество отходов данной марки стали или близких к ней других марок. Такое рациональное использование отходов дает большую экономию легирующих элементов, электроэнергии и повышает производительность электропечей. На плавках методом переплава отсутствует окислительный период. При правильном расчете шихты после расплавления сразу начинается восстановительный период, металл раскисляют, добавляют некоторые легирующие и выпускают. Плавка методом переплава легированных отходов значительно короче по сравнению с обычной плавкой.

Технология плавки в кислой дуговой электропечи

Электродуговые печи с кислой футеровкой обычно используются при выплавке стали для фасонного литья. Емкость их составляет от 0,5 до 6,0-10 т. Кислая футеровка более термостойкая и позволяет эксплуатировать печь с учетом условий прерывной работы многих литейных цехов машиностроительных заводов. Основным недостатком печей с кислой футеровкой является то, что во время плавки из металла не удаляются сера и фосфор. Отсюда, очень высокие требования к качеству применяемой шихты по содержанию этих примесей.

Процесс плавления шихты проводят так же как в основных печах. Для снижения угара легирующих элементов, а также железа, в ванну вводят шлак от предыдущей плавки, а также кварцевый песок и известь. К концу периода плавления в кислом железистом шлаке содержится 40 % FеО, >45 % SiO2.

В окислительном периоде при кислом процессе, в отличие от основного, отсутствует окисление фосфора. При высокой степени окисленности шлака удаление кислорода из ванны и ее кипение могут проходить без присадок железной руды. Однако для ускорения процесса обезуглероживания используют также введение твердых окислителей или продувку ванны кислородом. К концу окислительного периода содержание диоксида кремния в шлаке повышается до 60 %, значительная часть его поступает из футеровки подины. В условиях насыщения шлака диоксидом кремния возможно восстановление кремния углеродом, марганцем и железом еще до наступления восстановительного периода. Восстановительный период в печи с кислой футеровкой часто сводится к процессу раскисления металла, так как удаление серы из металла в присутствии кислого шлака невозможно. Раскисление углеродистой стали проводят введением в ванну ферросилиция, а при выпуске металла в ковш проводят дополнительное раскисление ферромарганцем или алюминием.

Источник

Оцените статью
Разные способы