Электрический способ разрушения эмульсии

Методы разрушения эмульсий.

Способы разрушения эмульсий, условно делятся на следующие группы: химические, механические, термические и электрические.

Термические методы – деэмульгирования нефти ускоряется при ее подогреве. С повышением температуры возрастают Ван – Дер. Ваальсовые силы, усиливается броуновское движение, вероятно, увеличивается скорость химической адсорбции и уменьшается вязкость эмульсии. Следовательно, уменьшается прочность бронирующего слоя и ускоряет процесс деэмульгирования. Если парафины являются основными стабилизаторами эмульсий, то нагревание нефти до температуры, превышающей температуру плавления парафинов (50-65 0 С) приводит к полному разрушению эмульсии. Высокие издержки, потери легких фракций нефти в результате их испарения являются очень серьезными недостатками термического способа деэмульгирования нефти. Испарение легких нефтяных фракций приводит к тому, что растворимость асфальтенов снижается и повышается вероятность отложения твердых осадков на внутри корпусных устройствах нефтеперерабатывающих установок и стенках печных труб, а также повышается риск их коррозии.

Физические методы – к данной группе методов относятся отстаивание воды в гравитационных сепараторах (отстойниках), фильтрация эмульсии через слой волокнистого или гранулированного фильтрующего материала, центрифугирование, замораживание, пневматическая флотация и многое другое.

Фильтрация – нестойкие эмульсии успешно расслаиваются при пропускании их через фильтрующий слой, который может быть из гравия, битого стекла, древесины, металлических стружек, стекловаты и других материалов. Здесь деэмульсация нефтей основана на явлении селективного смачивания. Смачивание жидкостью поверхности твердого тела можно рассматривать как результат действия сил поверхностного натяжения, т.е. жидкость тем лучше смачивает твердое тело, чем меньше взаимодействие между ее молекулами.

Фильтрующее твердое вещество должно удовлетворять основным требованиям:

— иметь хорошую смачиваемость водой, чтобы произошло сцепление глобул воды с фильтрующим веществом, разрыв межфазных пленок, и произошла коалесценции (слияние) капель воды;

— быть достаточно прочным, чтобы обеспечить длительную эксплуатацию.

Данный метод не находит широкого применения из – за громоздкого оборудования, малой производительности, необходимости часто менять фильтры.

Электрические методы – между дисперсионной средой и поверхностью диспергированных в ней частиц существует разность потенциалов. При воздействии на эмульсию электрического поля диспергированные капли воды поляризуются и стремятся расположиться вдоль силовых линий поля, при этом капли вытягиваются, а противоположные заряды в капле смещаются к ее краям, возникают силы взаимного притяжения, в результате чего частицы дисперсной фазы соударяются друг с другом и сливаются в более крупные. Обработка эмульсии в электрическом поле не способствует полному ее расслоению, поэтому данный способ, как правило, применяют в сочетании с термохимическими методами разрушения эмульсий.

Химические методы – нашли наиболее широкое применение в промышленности. Химическое деэмульгирование – самый дешевый, быстрый и простой в осуществлении – способ разрушения эмульсий. Его сущность заключается в устранении энергетического барьера (в виде стабилизирующего действия эмульгаторов в бронирующей оболочке), препятствующего расслоению эмульсий. Как правило, для обработки определенного сорта нефти применяют смесь реагентов, каждый из которых выполняет определенную функцию.

Дата добавления: 2015-04-03 ; просмотров: 3743 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Добыча нефти и газа

Изучаем тонкости нефтегазового дела ВМЕСТЕ!

Основные методы разрушения нефтяных эмульсий

Деэмульгирование нефтяных эмульсий лежит в основе обоих процессов подготовки нефти к переработке — её обезвоживания и обессоливания.

При обезвоживании деэмульгированию подвергают исходную эмульсионную нефть, при обессоливании — искусственную эмульсию, создаваемую при перемешивании нефти с промывной водой. Механизм разрушения нефтяных эмульсий можно разбить на три элементарных стадии: столкновение глобул воды; слияние их в более крупные капли; выпадение капель или выделение в виде сплошной водной фазы. Чтобы обеспечить максимальную возможность столкновения глобул воды, увеличивают скорость их движения в нефти различными способами: перемешиванием в смесителях, мешалках, при помощи подогрева, электрического поля, центробежных сил и др.

Однако для слияния капель воды одного столкновения недостаточно, нужно при помощи деэмульгаторов или другим способом ослабить структурно- механическую прочность слоев, создать наилучшие условия для быстрого и полного отстоя крупных капель воды от нефти. Согласно закону Стокса, скорость движения выпадающих частиц прямо пропорциональна квадрату их радиуса, разности плотностей диспергированных частиц и среды, ускорению силы тяжести и обратно пропорциональна вязкости среды, окружающей частицы. Следовательно, ускорить выпадение капелек воды можно, увеличив их размер, разность воды и нефти и уменьшив вязкость нефти. Разность плотностей можно увеличить, повысив температуру, так как коэффициент расширения воды при температуре примерно до 100°С меньше коэффициента расширения нефти. Вязкость нефти с повышением температуры уменьшается. Способы деэмульгирования нефтяных эмульсий условно можно разделить на следующие группы: • механические -фильтрация, центрифугирование, обработка ультразвуком и др. • термические — подогрев и отстаивание при атмосферном давлении и под избыточном давлением; промывка нефти горячей водой • электрические — обработка в электрическом поле переменного или постоянного тока • химические — обработка эмульсий различными реагентами — деэмульгаторами. В промышленности наибольшее применение нашли комбинированные способы разрушения нефтяных эмульсий.

Читайте также:  Способы финансирования деятельности предприятия курсовая

Основным современным способом деэмульгирования и обезвоживания нефти на промыслах является термохимический отстой под давлением до 15 ат с применением эффективных реагентов — деэмульгаторов. Для обессоливания нефти, главным образом на нефтеперабатывающих заводах, применяют способ, сочетающий термохимический отстой под избыточным давлением с обработкой эмульсии в электрическом поле высокой напряженности. Широко применяется на промыслах электрический способ обезвоживания и обессоливания. Электрический способ обессоливания включает две операции: 1) введение в частично обезвоженную нефть горячей воды для растворения солей и превращения нефти в эмульсию (расход воды на промывку эмульсии 10-15% от объёма нефти); 2) разрушение образовавшейся эмульсии в электрическом поле. При этом вода, выделяющаяся из эмульсии, уносит с собой соли. Обычно при использовании этого способа остаточное содержание воды в нефти 0-2,5%; количество удаляемых из неё солей — 95% и более. Выделение воды из эмульсии подчиняется закону Стокса. Однако основную роль в разрушении эмульсии играет не скорость выпадающих капель диспергированной фазы, а разрушение защитных плёнок глобул и соединение их в крупные капли, которые выпадают с линейной скоростью, определяемой законом Стокса. На этом основании электрический метод — разрушение эмульсии в электрическом силовом поле между электродами. Гидрофобные эмульсии, состоящие из глобул воды в нефтяной среде, разлагаются электрическим током достаточно эффективно. Это обусловлено значительно более высокой электрической проводимостью воды (да ещё содержащей соли) по сравнению с проводимостью нефти (проводимость чистой воды 4*10-8, проводимость нефти 3*10-13). В электрическом поле постоянного напряжения все глобулы эмульсии стремятся расположиться воль силовых линий поля, так как вода имеет большую диэлектрическую постоянную, чем нефть (для нефти она равна примерно 2, для воды — около 80). Элементарные глобулы образуют между электродами водяные нити-цепочки, что вызывает увеличение проводимости эмульсии и увеличение протекающего через неё тока. Между цепочками глобул возникают свои электрические поля, ведущие к пробою и разрыву оболочек и к слиянию глобул в капли, которые начинают быстрее оседать.

При помещении эмульсии в электрическое поле, созданное переменным током, скорость слияния глобул и расслоения эмульсии в 5 раз больше. Это объясняется большей вероятностью столкновения глобул при наличии переменного тока. При этом разрыв оболочек адсорбированного на глобулах эмульгатора облегчается возникающим в них натяжением и перенапряжением. Для обезвоживания малоустойчивых нефтяных эмульсий на нефтепромыслах применяют обычный способ отстаивания воды в резервуарах после смешения с деэмульгатором без подогрева или при подогреве до 30-50°С. Большой эффект даёт также в сочетании с отстаиванием промывка нефтяной эмульсии пластовой водой с деэмульгатором. В зависимости от устойчивости эмульсии опытным путём устанавливается технологический режим (температура, время отстаивания, расход деэмульгатора и др.) обработки полученных на промыслах нефтяных эмульсий. Более быстрое разделение фаз нефтяной эмульсии достигается центрифугированием, при котором силы гравитационного поля заменены в десятки тысяч раз большими центробежными силами. Основным недостатком центрифугирования является относительно низкая производительность сложного аппарата, требующего высококвалифицированного обслуживания.

Источник

Методы разрушения эмульсий

Способы разрушения эмульсий, условно делятся на следующие группы: химические, механические, термические и электрические.

Термические методы – деэмульгирования нефти ускоряется при ее подогреве. С повышением температуры возрастают Ван – Дер. Ваальсовые силы, усиливается броуновское движение, вероятно, увеличивается скорость химической адсорбции и уменьшается вязкость эмульсии. Следовательно, уменьшается прочность бронирующего слоя и ускоряет процесс деэмульгирования. Если парафины являются основными стабилизаторами эмульсий, то нагревание нефти до температуры, превышающей температуру плавления парафинов (50-65 0 С) приводит к полному разрушению эмульсии. Высокие издержки, потери легких фракций нефти в результате их испарения являются очень серьезными недостатками термического способа деэмульгирования нефти. Испарение легких нефтяных фракций приводит к тому, что растворимость асфальтенов снижается и повышается вероятность отложения твердых осадков на внутри корпусных устройствах нефтеперерабатывающих установок и стенках печных труб, а также повышается риск их коррозии.

Читайте также:  Способы продвижения строительных материалов

Физические методы – к данной группе методов относятся отстаивание воды в гравитационных сепараторах (отстойниках), фильтрация эмульсии через слой волокнистого или гранулированного фильтрующего материала, центрифугирование, замораживание, пневматическая флотация и многое другое.

Фильтрация – нестойкие эмульсии успешно расслаиваются при пропускании их через фильтрующий слой, который может быть из гравия, битого стекла, древесины, металлических стружек, стекловаты и других материалов. Здесь деэмульсация нефтей основана на явлении селективного смачивания. Смачивание жидкостью поверхности твердого тела можно рассматривать как результат действия сил поверхностного натяжения, т.е. жидкость тем лучше смачивает твердое тело, чем меньше взаимодействие между ее молекулами.

Фильтрующее твердое вещество должно удовлетворять основным требованиям:

— иметь хорошую смачиваемость водой, чтобы произошло сцепление глобул воды с фильтрующим веществом, разрыв межфазных пленок, и произошла коалесценции (слияние) капель воды;

— быть достаточно прочным, чтобы обеспечить длительную эксплуатацию.

Данный метод не находит широкого применения из – за громоздкого оборудования, малой производительности, необходимости часто менять фильтры.

Электрические методы – между дисперсионной средой и поверхностью диспергированных в ней частиц существует разность потенциалов. При воздействии на эмульсию электрического поля диспергированные капли воды поляризуются и стремятся расположиться вдоль силовых линий поля, при этом капли вытягиваются, а противоположные заряды в капле смещаются к ее краям, возникают силы взаимного притяжения, в результате чего частицы дисперсной фазы соударяются друг с другом и сливаются в более крупные. Обработка эмульсии в электрическом поле не способствует полному ее расслоению, поэтому данный способ, как правило, применяют в сочетании с термохимическими методами разрушения эмульсий.

Химические методы – нашли наиболее широкое применение в промышленности. Химическое деэмульгирование – самый дешевый, быстрый и простой в осуществлении – способ разрушения эмульсий. Его сущность заключается в устранении энергетического барьера (в виде стабилизирующего действия эмульгаторов в бронирующей оболочке), препятствующего расслоению эмульсий. Как правило, для обработки определенного сорта нефти применяют смесь реагентов, каждый из которых выполняет определенную функцию.

Источник

§ 4. Электрические способы разрушения эмульсий

Электрические способы разрушения нефтяных эмульсий являются эффективными и широко распространенными в промысловой и особенно заводской практике.

Сущность процесса электрообезвоживания заключается в том, что под влиянием внешнего электрического поля, образующегося между электродами, через которое прокачивается нефтяная эмульсия, между водяными капельками вследствие их поляризации образуются дополнительные (локальные) электрические поля и возникают электрические силы, способные преодолеть сопротивление дисперсионной среды и стабилизирующих слоев на капельках воды. В результате действия основного (внешнего) и дополнительного (между каждой парой капелек) электрических полей увеличивается число эффективных столкновений водяных капелек друг с другом, что способствует их коалесценции и образованию более крупных капель, которые затем отделяются от нефти под действием силы тяжести.

А. Разрушение эмульсий в переменном электрическом поле

Рассмотрим поведение взвешенных в нефти водяных капелек, образующих эмульсию и находящихся в переменном электрическом поле. Если безводную нефть поместить между двумя плоскими электродами, находящимися под высоким напряжением, то возникает однородное электрическое поле, силовые линии которого параллельны друг другу (рис. 9, а). Если же в нефти присутствуют водяные капельки (эмульсия), то однородность поля нарушается (рис. 9, б). При этом на поверхности водяной капельки под действием внешнего электрического поля индуцируются два равных по величине и противоположных по знаку электрических заряда (капелька поляризуется), в основном за счет разделения противоположно заряженных ионов.

Индуцированные заряды располагаются на поверхности капельки таким образом, что положительные заряды находятся на той стороне капельки, которая обращена к отрицательному электроду, а отрицательные заряды — на противоположной стороне. Необходимо помнить, что, когда мы говорим о положительном или отрицательном электроде, имеется ввиду знак заряда электрода в данный момент времени, так как в действительности знак заряда электрода меняется во времени с частотой переменного напряжения, приложенного к электродам.

Читайте также:  Способ питания животных группы

В результате кулоновского взаимодействия индуцированных зарядов с внешним электрическим полем капелька вытягивается в направлении поля, превращаясь в эллипсоид вращения. При этом, если электрическое поле является переменным (промышленная частота равна 50 герц), направленное движение капельки к одному из электродов невозможно, даже если учесть некоторый избыточный заряд какого-либо знака (зависит от природы компонентов эмульсии).

Две смежные капельки, находящиеся на одной силовой линии (рис.9,б), вследствие близости их концов с разной полярностью зарядов взаимно притягиваются и еще более вытягиваются. Причем, вследствие вытягивания и соответствующего уменьшения расстояния между ними, напряженность местного электрического поля растет. При этом, как показывают расчеты, величина напряженности электрического поля между капельками оказывается намного больше напряженности внешнего электрического поля и при достаточном сближении капелек не исключена возможность местного электрического пробоя между капельками, а это способствует разрушению адсорбционной оболочки эмульгатора и слиянию капелек.

Сила взаимного притяжения капелек, представляющих собой диполи, определяется уравнением:

где к — коэффициент пропорциональности,

Е — напряженность электрического поля между капельками,

d расстояние между центрами капелек.

Из этого уравнения видно, что если расстояние между капельками будет уменьшаться, например, по линейному закону, то сила притяжения капелек будет увеличиваться пропорционально 4-й степени и при незначительных расстояниях может стать настолько большой, что оболочки эмульгатора, разделяющие капельки, сдавливаются и разрушаются, а капельки сливаются в более крупные. Например, в высокодисперсной 5%-ной эмульсии капельки воды в среднем находятся на расстоянии двух диаметров друг от друга и процесс их слияния под действием электрического поля протекает очень быстро.

К недостаткам метода разрушения эмульсий в переменном однородном электрическом поле следует отнести невозможность полного отделения водной фазы от нефтяной. Действительно, с увеличением расстояния между капельками (например, в ходе процесса деэмуль-сации) напряженность электрического поля и сила взаимодействия между остающимися капельками быстро убывают. При малом содержании воды в нефти коалесценция продолжается только вследствие случайных сближений капелек, имеющих место при турбулентном движении жидкости. При содержании в эмульсии 1% диспергированной воды среднее расстояние между капельками равно примерно четырем их диаметрам, а силы дипольного притяжения по сравнению с аналогичными силами в 5%-ной эмульсии в 16 раз меньше. Если содержание воды в нефти будет равно 0,1%, то расстояния между капельками в среднем будут равны их восьми диаметрам и диполь-ные силы меньше в 256 раз, чем в 5%-ной эмульсии, то есть практически никакого слияния без принудительного перемешивания происходить не будет.

Однако оказывается, что переменное электрическое поле невысокой частоты (например, промышленной частоты 50 герц) может способствовать перемешиванию. Для не сильно обводненных эмульсий целесообразно применять неоднородное электрическое поле. В таком поле капельки воды, имеющие большую диэлектрическую постоянную, чем нефть, увлекаются в зону с большей напряженностью электрического поля. Таким образом, в областях большей напряженности поля концентрация капель воды повышается, вследствие чего растет частота их столкновений и вероятность слияния. Поэтому путем комбинирования однородного и неоднородного электрических полей можно проводить достаточно глубокое обезвоживание эмульсий типа В/М.

Дипольное взаимодействие капелек можно усилить, увеличив напряженность внешнего электрического поля. Однако при этом будет наблюдаться электрическое диспергирование капелек. Капельки воды, вытягиваясь под влиянием сил дипольного притяжения, удлиняются, в результате чего обволакивающие их пленки, адсорбированные на границе раздела фаз, натягиваются и на вытянутых концах капелек лопаются. Разрыв пленок иногда сопровождается выбросом облака мельчайших водяных частичек, которые разбрызгиваются вокруг места разрыва.

Этот процесс усиливается с повышением напряженности электрического поля и увеличением размеров капель, то есть для каждого данного размера капель существует своя критическая напряженность электрического поля, при которой капельки данного размера (и большего) диспергируют. Диспергирование капельки прекращается, когда ее размеры становятся такими, для которых данная напряженность электрического поля не является критической. Явление электрического диспергирования весьма нежелательно, так как образующиеся высокодисперсные капельки очень трудно удаляются из нефти.

Источник

Оцените статью
Разные способы