- Способы эксплуатации скважин.
- Эксплуатация скважин
- Смотреть что такое «Эксплуатация скважин» в других словарях:
- Все о нефти
- Добыча нефти. Способы эксплуатации скважин
- Фонтанный способ эксплуатации скважины
- Газлифтный способ эксплуатации скважины
- Насосные способы эксплуатации скважин
- Эксплуатация нефтяных и газовых скважин. Способы эксплуатации скважин
Способы эксплуатации скважин.
В зависимости от величины пластового давления, глубины залегания пласта, физических свойств нефти, содержания в ней воды и газа, проницаемости пород пласта и.т.д. нефтяные скважины эксплуатируются различными способами.
Все известные способы эксплуатации скважин подразделяются на следующие группы:
· фонтанная, когда нефть извлекается из скважин самоизливом;
· газлифтная, когда нефть извлекается с помощью энергии сжатого газа, вводимого в скважину извне;
· насосная – извлечение нефти с помощью насосов различных типов.
Фонтанирование скважин обычно происходит на вновь открытых месторождениях нефти, когда запас пластовой энергии велик, т.е. давление на забоях скважин достаточно большое, чтобы преодолеть гидростатическое давление столба жидкости в скважине, противодавление на устье и давление, расходуемое на преодоление трения, связанное с движением этой жидкости.
В зависимости от режима работы залежи фонтанирование скважины может происходить за счет энергии гидростатического напора, за счет энергии расширения газа, растворенного в нефти.
Фонтанирование только за счет гидростатического давления пласта – явление довольно редкое в практике эксплуатации нефтяных скважин. В большинстве случаев главную роль в фонтанировании скважин играет газ, содержащийся вместе с нефтью в пласте.
Газлифтная эксплуатация нефтяных скважин является как бы продолжением фонтанного способа добычи с той разницей, что при фонтанировании источником энергии служит газ, поступающий вместе с нефтью из пласта, а при газлифтной эксплуатации подъем жидкости осуществляется при помощи сжатого газа, нагнетаемого в скважину с поверхности.
Разновидности газлифтной эксплуатации скважин:
1. Компрессорный (закачка газа компрессором высокого давления в поток добываемой продукции).
2. Безкомпрессорный(использование газа газовых скважин или магистрального газопровода).
3. Внутрискважинный (использование газа из пластов, расположенных выше или ниже эксплуатируемого нефтяного).
В зависимости от того, какой газ под давлением закачивается в скважину различают два способа компрессорной добычи нефти: газлифт (рабочий агент – природный газ) и эрлифт (рабочий агент – воздух).
Существует две системы подачи газа в газлифтную скважину (прямая и обратная закачка газа):
1) кольцевая система – подача газа осуществляется в затрубное пространство, подъём газожидкостной смеси осуществляется по колонне НКТ;
2) центральная система – подача газа осуществляется в НКТ, подъём газожидкостной смеси осуществляется по затрубному пространству.
Газлифт применяется в тех случаях, когда работа насосов осложнена высоким газосодержанием или температурой жидкости, наличием песка, отложениями парафина и солей, а также в кустовых и наклонно-направленных скважинах.
В настоящее время разработка нефтяных месторождений России ведется с поддержанием пластового давления (хотя это и не всегда целесообразно), а основная добыча нефти осуществляется механизированным способом, в основном, насосным, поэтому газлифтный способ не имеет широкого распространения. Это не означает, что газлифтная эксплуатация не имеет перспектив; этот способ может оказаться конкурентоспособным для разработки нефтяных оторочек газовых и газоконденсатных месторождений, а также для добычи нефти из шельфовых месторождений.
В мировой практике нефтедобычи получили распространение следующие глубиннонасосные установки:
1. Скважинные штанговые насосные установки (СШНУ).
2. Установки погружных центробежных насосов с электроприводом (УЭЦН).
3. Установки гидравлических поршневых насосов (УГПН).
4. Установки с винтовыми насосами и электроприводом (УЭВН).
5. Установки с диафрагменными насосами и электроприводом (УЭДН).
6. Установки со струйными насосами (УСН).
Не все из перечисленных глубиннонасосных установок играют одинаковую роль в добыче нефти.
В нашей стране наибольшее распространение по фонду добывающих скважин получили СШНУ, а по объему добычи — УЭЦН. Это связано с тем, что установки СШНУ предназначены для эксплуатации низко- и среднедебитных скважин, а установки УЭЦН — для эксплуатации средне- и высокодебитных скважин. Остальные установки (УГПН, УЭВН, УЭДН, УСН) ни по фонду добывающих скважин, ни по добыче нефти не могут пока конкурировать с СШНУ и УЭЦН и предназначены для определенных категорий скважин.
Дата добавления: 2017-06-13 ; просмотров: 10021 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник
Эксплуатация скважин
Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. — М.: Российский государственный университет нефти и газа им. И. М. Губкина . М.А. Мохов, Л.В. Игревский, Е.С. Новик . 2004 .
Смотреть что такое «Эксплуатация скважин» в других словарях:
Эксплуатация скважин — 6.1.1. Под эксплуатацией скважин понимается их использование в технологических процессах подъема из пласта на поверхность жидкости (нефти, конденсата, воды) и газа. Источник: Правила разработки нефтяных и газонефтяных месторождений (утв.… … Официальная терминология
Периодическая эксплуатация скважин — (a. pulse well production; н. intermittierender Bohrlochbetrieb; ф. exploitation intermittente des puits; и. explotacion periodica de pozos) способ эксплуатации малодебитных скважин, основанный на чередовании периодов извлечения и… … Геологическая энциклопедия
бескомпрессорная газлифтная эксплуатация скважин — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN straight gaslift well operation … Справочник технического переводчика
компрессорная эксплуатация (скважин) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN air pumping … Справочник технического переводчика
Технологический режим эксплуатации скважин — ► operating practices of well operation Совокупность ряда условий и норм, с помощью которых осуществляется рациональная эксплуатация скважин. Включает следующие элементы: ■ абсолютные величины дебитов нефти, газа, воды и эмульсии в данной… … Нефтегазовая микроэнциклопедия
Пробная эксплуатация — опытная эксплуатация (a. trial operation, test production; н. Probeforderung, Produktionstest; ф. exploitation pilote, production experimentale; и. explotacion de prueba, produccion de prueba), начальный период разработки нефт. (газового) … Геологическая энциклопедия
Закрытая эксплуатация — нефтяных скважин, способ сбора нефти на промыслах, при котором нефть из скважин движется по герметично закрытой системе трубопроводов и аппаратов, не контактируя с атмосферой. Впервые схема З. э. разработана русским учёным М. М.… … Большая советская энциклопедия
Пробная эксплуатация, опытная эксплуатация — ► pilot operation Начальный период разработки нефтяного (газового) месторождения или его части с целью получения необходимого количества информации, используемой для обоснования системы и показателей промышленной разработки и составления ее… … Нефтегазовая микроэнциклопедия
СТО Газпром 2-2.3-145-2007: Инструкция по техническому диагностированию скважин ПХГ — Терминология СТО Газпром 2 2.3 145 2007: Инструкция по техническому диагностированию скважин ПХГ: 3.1.1 геофизические исследования скважин, ГИС: Исследования, основанные на измерениях естественных и искусственных физических полей во… … Словарь-справочник терминов нормативно-технической документации
закрытая эксплуатация — в нефтедобыче, способ добычи нефти, при котором транспортирование её от скважин до сборного пункта, отделение газа и воды осуществляются в герметизированной системе под давлением, большим атмосферного. * * * ЗАКРЫТАЯ ЭКСПЛУАТАЦИЯ ЗАКРЫТАЯ… … Энциклопедический словарь
Источник
Все о нефти
Добыча нефти. Способы эксплуатации скважин
Как известно, в стволе скважины всегда присутствует жидкость. На этапе бурения скважины – это буровой раствор. По окончании бурения его, как правило, замещают технической водой. А в результате мероприятий по освоению скважины ствол заполняется пластовой жидкостью (нефтью или нефтью с водой). Таким образом, как я уже сказал, в стволе скважины всегда присутствует столб жидкости.
Столб жидкости создает гидростатическое давление (Р) на забой скважины, которое описывается известным уравнением:
P — гидростатическое давление;
ρ — плотность жидкости;
g — ускорение свободного падения;
h — высота столба жидкости
Для того чтобы в скважину поступала жидкость из пласта (будь то нефть, газ или вода) должно соблюдаться простое условие: пластовое давление должно быть выше гидростатического давления столба жидкости в стволе скважины.
Теперь, если энергия пласта изначально высока и пластовое давление выше давления столба жидкости в стволе скважины, то получаем естественный приток нефти. Такой способ называется фонтанный способ эксплуатации скважины.
Если энергии пласта недостаточно, чтобы обеспечить приток нефти в скважину, то у нас есть два варианта. Согласно приведенной выше формуле нам надо либо уменьшить плотность жидкости (ρ) в стволе скважины, либо уменьшить высоту столба жидкости (h). На величину g мы повлиять не можем, так как это величина постоянная.
На изменении плотности жидкости основан газлифтный способ эксплуатации скважины. При этом способе с помощью колонны насосно-компрессорных труб (НКТ) в скважину закачивают сжатый газ. Пузырьки газа, поднимаясь к устью скважины, снижают плотность столба жидкости, что обеспечивает снижение гидростатического давления и соответственно приток нефти из пласта.
Если же снижения плотности жидкости недостаточно для притока нефти, то остается только снижать высоту столба жидкости. Этого достигают насосными способами эксплуатации скважины. В скважину, попросту говоря, спускают насос и откачивают присутствующую в ней жидкость. Высота столба жидкости снижается до тех пор, пока из пласта не начнет поступать нефть. В результате при работающем насосе в скважине устанавливается какой-то равновесный уровень столба жидкости, который называется динамическим уровнем.
Таким образом, выделяют три основных способа эксплуатации скважин:
Методы, предполагающие использование внешнего источника мощности для поднятия жидкости на поверхность носят общее название механизированная добыча.
Фонтанный способ эксплуатации скважины
При фонтанном способе жидкость и газ поднимаются по стволу скважины от забоя на поверхность только под действием пластовой энергии, которой обладает нефтяной пласт. Этот способ является наиболее экономичным, так как не требует дополнительных затрат энергии на подъем жидкости на поверхность. Кроме того при этом способе не требуется закупка дорогостоящего оборудования, требующего к тому же регулярного обслуживания.
Оборудование фонтанных скважин состоит из колонной головки, фонтанной арматуры и выкидной линии. Это оборудование относится к наземному. Подземное оборудование состоит из колонны насосно-компрессорных труб (НКТ), которые, как правило, спускают до глубины верхних дыр перфорации.
Рисунок 1. Устьевая арматура фонтанной скважины
Насосно-компрессорные трубы (НКТ) в фонтанных скважинах служат для подъема жидкости и газа на поверхность, регулирования режима работы скважины, проведения исследовательских работ, борьбы со смолопарафиновыми отложениями, осуществления различных геолого-технических мероприятий (ГТМ), предохранения эксплуатационной колонны от коррозии и эрозии, предупреждения и ликвидации песчаных пробок, глушения скважин перед подземным или капитальным ремонтами, предохранения эксплуатационной колонны скважины от высокого давления при различных геолого-технических мероприятиях.
Газлифтный способ эксплуатации скважины
Газлифтная эксплуатация является продолжением фонтанной эксплуатации, когда пластовая энергия уменьшается настолько, что подъем жидкости на поверхность ею не обеспечивается и возникает необходимость в дополнительной энергии. В качестве дополнительной энергии используется газ высокого давления.
В результате смешивания дополнительно поступающего в скважину газа с пластовой жидкостью образуется газожидкостная смесь пониженной плотностью, что снижает давление на забое скважины. Пониженное забойное давление обеспечивает приток продукции из пласта и подъем газожидкостной смеси на поверхность.
Различают компрессорный газлифт и бескомпрессорный газлифт. Если для сжатия газа до необходимого давления и закачки его в скважину применяются компрессоры, то соответственно такой способ эксплуатации называется компрессорным газлифтом. Если в качестве рабочего агента для газового подъемника применяется газ из газовых пластов высокого давления, то в этом случае эксплуатация скважин называется бескомпрессорным газлифтом.
Преимущества газлифтной эксплуатации:
- все оборудование располагается на поверхности, что упрощает его ремонт и обслуживание;
- простота конструкций оборудования;
- возможность отбора больших объемов жидкости (до 1800 т/сут) независимо от глубины скважины и диаметра эксплуатационной колонны;
- простое регулирование дебита нефти скважины (увеличивая или уменьшая подачу газа в скважину);
- возможность эксплуатации пескопроявляющих и обводненных скважин;
- простота исследования скважин.
Недостатки газлифтной эксплуатации:
- необходимость частой замены НКТ, особенно в обводненных скважинах и в пескопроявляющих скважинах;
- низкий КПД подъемника и всей системы компрессор-скважина (при низких динамических уровнях КПД подъемника часто не превышает 5%);
- большая стоимость затрат на строительство компрессорных станций, газораспределительных будок и сети газопроводов в начале обустройства месторождений;
- большой расход электроэнергии на добычу 1 т нефти при эксплуатации малодебитных скважин с низкими динамическими уровнями.
Насосные способы эксплуатации скважин
Существуют следующие виды насосной эксплуатации скважин:
- установкой штангового глубинного насоса (УШГН);
- установкой электроцентробежного насоса (УЭЦН);
- установкой штангового (либо электропогружного) винтового насоса (УШВН, УЭВН);
- установкой электродиафрагменного насоса (УЭДН) и др.
Источник
Эксплуатация нефтяных и газовых скважин. Способы эксплуатации скважин
Все известные способы эксплуатации скважин подразделяются на следующие группы:
1) фонтанный, когда нефть извлекается из скважин самоиз-ливом;
2) с помощью энергии сжатого газа, вводимого в скважину извне;
3) насосный — извлечение нефти с помощью насосов различных типов.
Выбор способа эксплуатации нефтяных скважин зависит от величины пластового давления и глубины залегания пласта.
Фонтанный способприменяется если пластовое давление велико. В этом случае нефть фонтанирует, поднимаясь на поверхность по насосно-компрессорным трубам за счет пластовой энергии. Условием фонтанирования является превышение пластового давления над гидростатическим давлением столба жидкости, заполняющей скважину.
Устройство скважины для фонтанной добычи нефти показано на рис. 7.12.
Нефть поступает в нее из пласта через отверстия в колонне эксплуатационных труб 1. Внутри эксплуатационной колонны находятся насосно-компрессорные трубы 2. Нефть поступает в них через башмак 3. Верхний конец насосно-компрессорных труб через фланец 4 соединяется с фонтанной арматурой 5. Фонтанная арматура представляет собой систему труб с задвижками. К этой системе присоединен штуцер 6, представляющий собой стальную болванку с цилиндрическим каналом малого сечения. Назначение штуцера заключается в ограничении притока нефти в скважину путем дросселирования давления на выходе из нее.
| Рис 7 12. Устройство скважины для фонтанной добычи нефти: 1 — эксплуатационная колонна; 2 — насосно-компрессорные трубы; 3 — башмак; 4 — фланец; 5 — фонтанная арматура; 6 — штуцер |
| Рис. 7 13. Устройство скважины для компрессорной добычи нефти: 1 — обсадная труба, 2 — подъемная труба; 3 — воздушная труба |
| Рис. 7.14. Механизм компрессорной добычи нефти |
Установка штуцера позволяет обеспечить длительную и бесперебойную работу скважины в фонтанном режиме. Кроме того, благодаря низким скоростям притока нефти, уменьшается загрязнение скважины частицами породы.
Из штуцера пластовая нефть попадает в сепаратор (или трап), где происходит ее разделение на нефть и нефтяной газ.
Фонтанный способ эксплуатации нефтяных скважин применяется на начальном этапе разработки месторождений.
Все газовые скважины эксплуатируются фонтанным способом. Газ поступает на поверхность за счет пластового давления.
Компрессорнымназывается способ эксплуатации нефтяных скважин, при котором подъем жидкости из пласта на поверхность осуществляется сжатым газом, нагнетаемым в колонну подъемных труб.
Устройство скважины для компрессорной добычи нефти показано на рис. 7.13.
При компрессорном способе в скважину опускают две соос-ные трубы. Внутреннюю 2, по которой смесь извлекается наверх, называют подъемной,а наружную 3, по затрубному пространству между которой и трубой 2 в скважину под давлением подается газ, —воздушной.Подъемная труба короче воздушной.
Механизм компрессорной добычи нефти следующий (рис. 7.14). При закачке газа в скважину нефть сначала полностью вытесняется в подъемную трубу. После этого в подъемную трубу проникает закачиваемый газ. Он смешивается с нефтью, в результате чего плотность смеси в подъемной трубе становится значительно меньше плотности нефти. Вследствие этого чтобы уравновесить давление, создаваемое столбом нефти между трубами 1 и 3, столб смеси в подъемной трубе 2 удлиняется, достигает поверхности земли и поступает в выкидную линию скважины.
В зависимости от того какой газ под давлением закачивается в скважину различают два способа компрессорной добычи нефти: газлифт (рабочий агент — природный газ) и эрлифт (рабочий агент -воздух). Применение эрлифта менее распространено, т.к. при контакте с воздухом нефть окисляется.
Для закачки газа в скважину сооружают специальные газлиф-тные компрессорные станции.
Достоинствами компрессорного способа эксплуатации нефтяных скважин являются:
1) отсутствие подвижных и быстроизнашивающихся деталей (что позволяет эксплуатировать скважины с высоким содержанием песка);
2) доступность оборудования для обслуживания и ремонта (поскольку все оно размещается на поверхности земли);
3) простота регулирования дебита скважин. Однако у способа имеются и недостатки:
1) высокие капитальные вложения на строительство мощных компрессорных станций и разветвленной сети газопроводов;
2) низкий к.п.д. газлифтного подъемника и системы «компрессор-скважина».
Для уменьшения капиталовложений там, где возможно, в нефтяную скважину подают под давлением без дополнительной компрессии газ из газовых пластов. Такой способ называют бескомпрессорным лифтом.
В зависимости от конкретных условий месторождений и геолого-технических характеристик скважин применяют непрерывный и периодический газлифтные способы эксплуатации. При периодическом газлифте подача газа в скважину периодически прерывается с тем, чтобы в ней накопилось необходимое количество жидкости. Таким образом, эксплуатируют скважины с низкими забойным давлением и коэффициентом продуктивности. При низком забойном давлении, но высоком коэффициенте продуктивности применяют тот из двух способов, который имеет лучшие показатели (например, меньший расход нагнетаемого газа).
Принципиальная схема газлифтного цикла приведена на рис. 7.15.
При наличии газовой скважины высокого давления реализуется бескомпрессорный лифт. Газ из скважины 1 через газовый сепаратор 2 подается в теплообменник 3. Нагретый газ после дополнительной очистки в сепараторе 4 проходит через газораспределительную батарею 5 и направляется к газлифтным скважинам 6. Продукция скважин направляется в газонефтяной сепаратор 7, после которого нефть поступает в коллектор, а газ, содержащий капельки нефти проходит дополнительную очистку в сепараторе 8 и после сжатия в компрессорной станции 9 поступает в систему промыслового сбора.
Если газовой скважины высокого давления нет, то для газлифта используется попутный нефтяной газ. После компримирования газ из компрессорной станции 9 последовательно проходит теплообменник 3, газовый сепаратор 4 и так далее, пока вновь не поступит на станцию 9. В данном случае используется замкнутый газлифтный цикл, при котором нагнетаемый в скважины газ многократно используется для подъема жидкости.
При насосном способеэксплуатации подъем нефти из скважин на поверхность осуществляется штанговыми и бесштанговыми насосами.
Рис. 7.15. Схема газлифтного цикла при добыче нефти:
1 — газовая скважина высокого давления; 2,4,8 — газовый сепаратор;
3 — теплообменник; 5 — газораспределительная батарея; 6 — газлифтная
скважина; 7 — газонефтяной сепаратор; 9 — компрессорная станция
I — газ высокого давления из газовой скважины; II — продукция
газлифтной скважины; III — нефть; IV — газ низкого давления,
содержащий капельную нефть; V — газ низкого давления, очищенный от
нефти; VI — сжатый газ в систему промыслового сбора; VII — газ высокого
давления после компрессорной станции
Штанговый насоспредставляет собой плунжерный насос специальной конструкции, привод которого осуществляется с поверхности посредством штанги (рис. 7.16).
В нижней части насоса установлен всасывающий клапан 1. Плунжер насоса, снабженный нагнетательным клапаном 2, подвешивается на насосной штанге 3. Верхняя часть штанги пропускается через устьевой сальник 5 и соединяется с головкой балансира 6 станка-качалки. При помощи кривошипно-шатунного механизма 7 головка 9 балансира передает возвратно-поступательное движение штанге 3 и подвешенному на ней плунжеру. Станок приводится в действие электродвигателем 8 через систему передач.
Работает насос следующим образом. При ходе плунжера вверх верхний клапан 2 закрыт, так как на него действует давление вышележащего столба жидкости и плунжер работает как поршень, выталкивая нефть на поверхность. В это же время открывается приемный клапан 1 и жидкость поступает в цилиндр насоса. При ходе плунжера вниз нижний клапан закрывается, а верхний открывается и через полый плунжер жидкость выдавливается из цилиндра насоса в насосные трубы 10.
При непрерывной работе насоса в результате подкачки жидкости уровень последней в насосных трубах поднимается до устья и она поступает в выкидную линию через тройник 4.
Недостатками штанговых насосов являются громоздкость, возможность обрыва штанг, ограниченность применения в наклонных и сильнообводненных скважинах, недостаточно высокая подача, небольшие (до 2 км) глубины эксплуатации.
В связи с этим в последние годы при эксплуатации нефтяных скважин все шире применяются бесштанговые насосы(погружные электроцентробежные насосы, винтовые насосы и др).
Схема установки в скважине погружного электроцентробежного насоса(ЭЦН) приведена на рис. 7.17. Она включает центробежный многоступенчатый насос 1, погружной электродвигатель 2, подъемные трубы 3, обратный клапан 4, устьевую арматуру 5. Бронированный кабель для питания электродвигателя и источник электропитания на схеме условно не показаны.
Принцип действия установки следующий. Электрический ток из промысловой сети через автотрансформатор и станцию управления по бронированному кабелю поступает к электродвигателю 2. Вращая вал насоса 1, электродвигатель приводит его в действие. Всасываемая насосом нефть проходит через фильтр (на схеме не показан) и нагнетается по подъемным трубам 3 на поверхность. Чтобы нефть при остановке агрегата не сливалась из подъемных труб в скважину, в трубах над насосом смонтирован обратный клапан 4.
Рис. 7.16. Схема добычи нефти с помощью
1 — всасывающий клапан; 2 — нагнетательный клапан; 3 — штанга; 4 — тройник; 5 — устьевой сальник; 6 ь балансир станка о качалки; 7 — кривошипно -шатунный механизм; 8 -электродвигатель; 9 — головка балансира; 10 — насосные трубы
Рис. 7.17. Схема установки ЭЦН в скважине: 1 — центробежный многоступенчатый насос; 2 — погружной электродвигатель; 3 — подъемные трубы; 4 — обратный клапан: 5 — устьевая арматура
Погружной электроцентробежный насос представляет собой набор отдельных ступеней, в каждой из которых имеется свой ротор (центробежное колесо) и статор (направляющий аппарат).Роторы отдельных ступеней посажены на один вал, жестко соединенный с валом погружного электродвигателя.
Каждая из ступеней ЭЦН развивает напор 3. 5.5 м. Поэтому для обеспечения напора в 800. 1000 м в корпусе насоса монтируют 150. 200 ступеней.
Существенными недостатками электроцентробежных насосов являются их низкая эффективность при работе в скважинах с дебитом ниже 60 м’/сут; снижение подачи, напора и кпд при увеличении вязкости откачиваемой смеси, а также при увеличении свободного газа на приеме насоса.
Погружные винтовые насосыстали применяться на практике сравнительно недавно. Винтовой насос — это насос объемного действия, подача которого прямопропорциональна частоте вращения специального винта (или винтов). При вращении винт и его обойма образуют но всей длине ряд замкнутых полостей, которые передвигаются от приема насоса к его выкиду. Вместе с ними перемещается и откачиваемая жидкость.
Применение винтовых насосов особенно эффективно при откачке высоковязкой нефти. Схема их установки в скважине такая же как и при применении ЭЦН.
Для насосной эксплуатации скважин используются также диафрагменные, гидропоршневые и струйные насосы.
Нефтяные, газовые и газоконденсатные скважины оснащены специальным подземным и наземным оборудованием. К подземномуотносится оборудование забоя и оборудование ствола скважины, а к наземному— оборудование устья, прискважинные установки и сооружения.
Оборудование забоя скважин
Оборудование забоя предназначено для предотвращения разрушения продуктивного пласта и выноса на забой твердых частиц, а также для изоляции обводнявшихся пропластков. В то же время оно должно иметь возможно меньшее сопротивление и обеспечивать условия для проведения работ по увеличению производительности скважин.
В зависимости от геологических и технологических условий разработки месторождений применяют следующие типовые конструкции забоев скважин (рис. 7.18)
Рис. 7.18. Конструкции оборудования забоя скважин:
а) — открытый забой; б) — забой, перекрытый хвостовиком колонны,
перфорированным перед его спуском; в) — забой, оборудованный
фильтром; г) — перфорированный забой;
— забой, перекрытый хвостовиком колонны, перфорированным перед ее спуском;
— забой, оборудованный фильтром;
При открытом забое(рис. 7.18 а) башмак обсадной колонны цементируется перед кровлей пласта. Затем пласт вскрывается долотом меньшего размера, но никаких мер по укреплению ствола скважины в месте ее прохождения через продуктивный пласт не принимается. Такая конструкция забоя обеспечивает наименьшее . сопротивление притоку нефти и газа в скважину, но возможна только при достаточно устойчивых горных породах. Из-за невозможности избирательного вскрытия нужных пропластков и избирательного воздействия на них, а также постоянной угрозы обвалов в призабойной зоне открытым забоем оснащено менее 5 % всего фонда скважин.
Одним из способов укрепления горных пород является устройство забоя, перекрытого хвостовиком колонны, перфорированным перед ее спуском(рис. 7.18 б). В этом случае скважина бурится сразу до подошвы продуктивного пласта и крепится обсадной колонной по всей длине. Но трубы обсадной колонны, расположенные напротив толщи продуктивного пласта, заранее перфорированы и пространство между ними и поверхностью пласта не цементируется. Данная конструкция забоя надежнее предыдущей, но возрастает и сопротивление притоку пластовых флюидов.
Забой, оборудованный фильтром(рис. 7.18 в), применяется в случае, если существует опасность поступления песка в скважину. В этом случае башмак обсадной колонны спускается до кровли пласта и цементируется. Напротив его продуктивной части устанавливается специальный фильтр, а кольцевое пространство между верхней частью фильтра и низом обсадной колонны герметизируется.
Известны щелевые (с продольными щелевыми отверстиями длиной 50. 80 мм и шириной 0,8. 1,5 мм), керамические, гравийные (из двух концентричных мелкоперфорированных труб, между которыми утрамбован отсортированный гравий с диаметром частиц 4. 6 мм) и металлокерамические (изготовляемые путем спекания под давлением керамической дроби) фильтры. Необходимость в их применении возникает при вскрытии скважинами несцементированных песчаных пластов, склонных к пескообразованию, что встречается достаточно редко.
Скважины с перфорированным забоем(рис. 7.18 г) составляют более 90 % общего фонда. При их сооружении бурение ведется до подошвы продуктивного пласта, после чего в скважину опускают обсадные трубы и цементируют кольцевое пространство на всей ее длине. И только после этого производят перфорацию обсадной колонны и цементного камня на тех интервалах глубин, где ожидается приток нефти и газа.
Достоинствами скважин с перфорированным забоем являются:
— упрощение технологии проводки скважины;
— устойчивость забоя и сохранение проходного сечения скважины в процессе длительной эксплуатации;
— надежная изоляция пропластков, не вскрытых перфорацией;
— возможность поинтервального воздействия на призабойную зону пласта (различные обработки, гидроразрыв и т.д.).
В то же время перфорированный забой не обеспечивает защиты от проникновения песка в скважину и создает дополнительное фильтрационное сопротивление потоку пластовой жидкости.
Оборудование ствола скважин
К оборудованию ствола относится оборудование, размещенное внутри эксплуатационной (обсадной) колонны в пространстве от забоя до устья. Набор этого оборудования зависит от способа эксплуатации скважин.
В стволе фонтанных скважинразмещают колонну насосно-компрессорныхтруб. Этим обеспечивается предохранение обсадных труб от эрозии, вынос твердых частиц (и жидкости — при добыче газа) с забоя, возможность использования затрубного пространства для целей эксплуатации (введение ингибиторов коррозии, ПАВ, глушение скважин и т.д.).
В стволе газлифтных скважинразмещают воздушную и подъемную трубы. Но в отличие от классической схемы газлифта (рис. 7.13) подъемную трубу в настоящее время оборудуют специальными пусковыми (газлифтными) клапанами, размещаемыми на ее внутренней стороне в расчетных точках. Благодаря этому, при закачке газа в межтрубное пространство газлифт начинает работать, как только нефть будет оттеснена ниже уровня установки первого пускового клапана (рис. 7.19 б). После опускания уровня нефти в межтрубье ниже отметки второго пускового клапана газ начинает проникать в подъемную трубу и через него (рис. 7.19 в). Процесс последовательного срабатывания пусковых клапанов будет продолжаться до тех пор, пока весь столб жидкости в подъемной трубе не будет газирован (рис. 7.19 г).
В стволе штанговых насосных скважинразмещаются насос-но-компрессорные трубы, насосные штанги, собственно насос и вспомогательное оборудование.
Рис. 7.19. Этапы запуска газлифтной скважины: а) — начало закачки газа; б) — начало работы газлифта;
в) — включение 2’™ пускового клапана; г) — выход лифта на максимальную производительность;
| газожидкостная смесь; | | газ |
Насосно-компрессорные трубы(НКТ), как и бурильные, бывают с гладкими и высаженными (равнопрочными) концами. По длине НКТ разделяются на три группы: I — от 5,5 до 8 м; II — 8. 8,5 м; III — 8,5. 10 м. Изготавливают НКТ из сталей пяти групп прочности (в порядке возрастания): Д, К, Е, Л, М. Все НКТ и муфты к ним, кроме гладких группы прочности Д, подвергаются термообработке.
Сведения о диаметрах и толщине стенки насосно-компрессор-
ных труб приведены в табл. 7.1.
Характеристики насосно-компрессорных труб
Условный диаметр, мм | Толщина стенки, мм | Внутренний диаметр, мм |
5,5 | ||
6,5 | ||
6,5 |
Трубы маркируются у муфтового конца. На клейме указывается условный диаметр и толщина стенки (в мм), товарный знак завода, группа прочности (буква), месяц и год выпуска.
Для уменьшения собственного веса труб при необходимости их спуска на большую глубину применяют ступенчатую колонну НКТ с малым диаметром внизу и большим вверху.
Насосные штангивыпускаются четырех номинальных размеров по диаметру тела штанги: 16, 19, 22 и 25 мм. Концы штанг имеют утолщенные головки квадратного сечения, чем обеспечивается удобство их захвата специальными ключами при свинчивании и развинчивании колонны штанг. Штанги соединяются штанговыми муфтами (рис. 7.20).
Кроме штанг нормальной длины (8 м) выпускаются укороченные штанги длиной 1; 1,2; 1,5; 2; 3 м стандартных диаметров. Они необходимы для регулировки всей колонны штанг с таким расчетом, чтобы висящий на них плунжер перемещался в цилиндре насоса в заданных пределах. Верхний конец колонны штанг заканчивается утолщенным полированным штоком, проходящим через сальниковое уплотнение устья скважины.
При использовании насосов диаметром 56 мм и выше, больших скоростях плунжера и высокой вязкости откачиваемой жидкости в нижней части колонны штанг возникают повышенные изгибы.
Рис. 7.20. Насосная штанга и соединительная муфта
Рис.7.21.Якори: а) — газовый; б) — песочный прямой; в) — песочный обратный;
1 — корпус; 2 — центральная труба; 3 — газовый пузырёк; 4 — приёмный клапан насоса; 5 — отверстия
В этом случае, чтобы предотвратить отвороты и поломки прибегают к установке «утяжеленного низа», состоящего из 2. 6 толстостенных штанг общей массой 80. 360 кг.
Для изготовления насосных штанг используются стали марки 40 и никель-молибденовые стали марки 20НМ с термообработкой и последующим поверхностным упрочнением токами высокой частоты (ТВЧ). Условия их использования приведены в табл. 7.2.
Характер обработки и условия использования сталей для изготовления насосных штанг
Сталь | Способ термообработки | Условия работы в скважине | ||||
нормализация | Для легких условий эксплуатации: малые подвески, отсутствие корродирующей среды с допускаемым приведенным напряжением а 3 /сут | Напор м | Мощность, кВт | К.п.д % | Длина, мм | Масса, кг |
насосного агрегата | насоса | насосного агрегата | насоса | |||
ЭЦНМ5-50-1300 | 23,5 | |||||
ЭЦНМК5-50-1300 | 33,5 | |||||
ЭЦНМ5-50-1700 | 28,8 | |||||
ЭЦНМК5-50-1700 | 28,8 | |||||
ЭЦНМ5-80-1200 | 26,7 | |||||
ЭЦНМК5-80-1200 | 20,7 | |||||
ЭЦНМ5-80-1400 | 30,4 | 42,5 | ||||
ЭЦНМК5-80-1400 | 30,4 | 42,5 | ||||
ЭЦНМ5-80-1550 | 33,1 | 42,5 | ||||
ЭЦНМК5-80-1550 | 33,1 | 42,5 | ||||
ЭЦНМ5-80-1800 | 38,4 | 42,5 | 11 252 | |||
ЭЦНМК5-80-1800 | 38,4 | 42,5 | 11 252 | |||
ЭЦНМ5-125-1000 | 29,1 | |||||
ЭЦНМК5-125-1000 | 29,1 | |||||
ЭЦНМ5-125-1200 | 34,7 | |||||
ЭЦНМК5-125-1200 | 34,7 | |||||
ЭЦНМ5-125-1300 | 38,1 | |||||
ЭЦНМК5- 125- 1300 | 38,1 | 10С17 | ||||
ЭЦНМ5-125-1800 | 51,7 | 48,5 | ||||
ЭЦНМК5-125-1800 | 51,7 | 48,5 | ||||
ЭЦНМ5-200-800 | ||||||
ЭЦНМК5-200-950 | 50,8 | |||||
ЭЦНМ5-200-1000 | 54,5 | |||||
ЭЦНМК5-200-1400 | 76,2 | |||||
ЭЦНМ5А- 160-1450 | 51,3 | |||||
ЭЦНМК5А-160-1450 | 51,3 | 11 252 | ||||
ЭЦНМ5А-160-1550 | 56,2 | 11 252 | ||||
ЭЦНМК5А-160-1550 | 56,2 | |||||
ЭЦНМ5А-100-1750 | 62,3 | |||||
ЭЦНМ5А-250-1000 | 55,1 | 51,5 | И 252 | |||
ЭЦНМК5А-250-1000 | 55,1 | 51,5 | 11 252 | |||
ЭЦНМ5А-250-1100 | 60,1 | 51,5 | ||||
ЭЦНМК5А-250-1100 | 60,1 | 51,5 | ||||
ЭЦНМ5А-250-1400 | 76,3 | 51,5 | ||||
ЭЦНМК5А-250-1400 | 76,3 | 51,5 | ||||
ЭЦНМ5А-250-1700 | 92,8 | 51,5 | ||||
ЭЦНМК5А-250-1700 | 92,8 | 51,5 | ||||
ЭЦНМ5А-400-950 | 84,2 | |||||
ЭЦНМК5А-400-950 | 84,2 | |||||
ЭЦНМ5А-400-1250 | 113,9 | |||||
ЭЦНМК5А-400-1250 | 113,9 | |||||
ЭЦНМ5А-500-800 | 100,5 | |||||
ЭЦНМ5А-500-800 | 100,5 | 14 617 | ||||
ЭЦНМ5А-500-1000 | 123,3 | |||||
ЭЦНМК5А-500-1000 | 123,3 | |||||
ЭЦНМ6-250-1400 | 78,7 | |||||
ЭЦНМК6-250-1400 | 78,7 | |||||
ЭЦНМ6-250-1600 | 87,5 | |||||
ЭЦНМК6-250-1600 | 87,5 | |||||
ЭЩ1М6-500-1150 | 127,9 | 14 617 | ||||
ЭЦНМК6-500-П50 | 127,9 | |||||
ЭЦНМ6-800-1000 | 172,7 | |||||
ЭЦНМК6-800-1000 | 172,7 | 179И2 | ||||
ЭЦНМ6-1000-900 | 202,2 | 50,5 | 21 982 | |||
ЭЦНМК6-1000-900 | 202,2 | 50,5 | 21 982 |
Марка погружного электроцентробежного насоса содержит всю основную информацию о нем. Например, условное обозначение ЭЦНМ5-125-1200 означает: Э — привод от погружного электродвигателя; Ц — центробежный; Н — насос; М — модульный; 5 — группа насоса; 125 — подача, м ! /сут; 1200 — напор, м (округленно). Для насосов коррозионностойкогд исполнения перед цифрой 5 добавляется буква «К».
При откачке электроцентробежными насосами пластовой жидкости, содержащей свободный газ, происходит падение их напора, подачи и кпд, а возможен и полный срыв работы насоса. Поэтому, если содержание свободного газа в жидкости на входе в насос превышает 25 % по объему, то перед насосом устанавливают газосепаратор.
Конструктивно газосепараторпредставляет собой корпус, в котором на валу, соединенном с валом насоса, вращаются шнек, рабочие колеса и камера сепаратора. Газожидкостная смесь закачивается с помощью шнека и рабочих колес в камеру сепаратора, где под действием центробежных сил жидкость, как более тяжелая, отбрасывается к периферии, а газ остается в центре. Затем газ через наклонные отверстия отводится в затрубное пространство, а жидкость — поступает по пазам переводника на прием насоса.
Применение газосепараторов позволяет откачивать центробежными насосами жидкости с содержанием свободного газа до 55 %.
В стволе скважин, эксплуатируемых погружными винтовыми насосами,находится винтовой насос с погружным электродвигателем. Сведения об установках погружных винтовых электронасосов приведены в табл. 7.4.
Основные характеристики установок погружных винтовых электронасосов
Показатели | УЭВН5-16-1200 | УЭВН5-25-1000 | УЭВН5-6-12003 | УЭВН5-100-1000 | УЭВН5-100-1200 | УЭВН5-200-900 |
Номинальная подача, м 3 /сут | ||||||
Номинальное давление, МПа | ||||||
Рабочая часть характеристики: | ||||||
подача, м 3 /сут | 16-22 | 25-36 | 63-80 | 100-150 | 100-150 | 200-250 |
давление, МПа | 12-6 | 10-4 | 12-6 | 10-2 | 12-6 | 9-2,5 |
К.п.д. погружного агрегата, % | 38,6 | 40,6 | 41,4 | 45,9 | 46,3 | 49,8 |
Габариты погружного агрегата (насос, электродвигатель с гидрозащитой), мм: | ||||||
поперечный | ||||||
длина | ||||||
Мощность электродвигателя, кВт | 5,5 | 5,5 | ||||
Масса погружного агрегата, кг |
По типоразмеру установки можно определить ее основные параметры. Так, обозначение УЭВН5-16-1200 означает: У — установка; Э — привод от погружного электродвигателя; Н — насос; 5 — группа насоса для колонны обсадных труб диаметром 146 мм; 16 — подача, м 3 /сут; 1200 — напор, м.
Установки УЭВН5 используются для откачки жидкостей с температурой до 70°С, вязкостью до 1000 мм 2 /с, с содержанием мехпримесей не более 0,8 г/л и свободного газа на приеме насоса не более 50 %.
Оборудование устья скважин
Оборудование устья скважин всех типов предназначено для герметизации затрубного пространства, отвода продукции скважины, а также для проведения технологических операций, ремонтных и исследовательских работ. Оно комплектуется в зависимости от способа эксплуатации скважин.
При фонтанном, компрессорном и бескомпрессорном способахдобычи нефти оборудование устья составляется из одинаковых деталей и узлов по подобным схемам.
На устье скважин (рис. 7.22) монтируются колонная головка (ГК) и фонтанная арматура (ФА), состоящая в свою очередь из трубной головки (ГТ) и фонтанной елки (Е). Колонная головкапредназначена для соединения верхних концов обсадных колонн (кондуктора, технических и обсадных труб), герметизации межтрубных пространств и служит опорой для фонтанной арматуры. Трубная головкаслужит для обвязки одного или двух рядов фонтанных труб, герметизации межтрубного пространства между эксплуатационной колонной и фонтанными трубами, а также для проведения технологических операций при освоении, эксплуатации и ремонте скважины. Обычно трубная головка представляет собой крестовину с двумя боковыми отводами и трубной подвеской. Боковые отводы 8 позволяют закачивать в межтрубное пространство воду и глинистый раствор при глушении скважины, ингибиторы гидратообразования и коррозии, измерять затрубное давление (манометром 7), а также отбирать газ из него. Трубная головка монтируется непосредственно на колонной головке. Фонтанная елкапредназначена для управления потоком продукции скважины и регулирования его параметров, а также для установки манометров, термометров и приспособлений, служащих для спуска и подъема глубинных приборов. Елка состоит из вертикального ствола и боковых отводов-выкидов (струн). На каждом отводе устанавливают по две задвижки: рабочую 16 и резервную (ближайшую к стволу) 14.
Источник