Двумерные массивы способ описания

TURBO PASCAL

Двумерные массивы

Массивы, положение элементов в которых описывается двумя индексами, называются двумерными. Их можно представить в виде прямоугольной таблицы или матрицы.

Рассмотрим матрицу А размерностью 2*3, то есть в ней будет две строки, а в каждой строке по три элемента:

Каждый элемент имеет свой номер, как у одномерных массивов, но сейчас номер уже состоит из двух чисел — номера строки, в которой находится элемент, и номера столбца. Таким образом, номер элемента определяется пересечением строки и столбца. Например, a12 — это элемент, стоящий в первой строке и во втором столбце.

Существуют несколько способов объявления двумерного массива.

Способ 1. В Паскале двумерный массив можно описать как одномерный, элементами которого являются одномерные массивы. Например, для матрицы А, приведённой выше:

Const n = 2; m = 3;
Type omyarray = Array[1..m] Of ;
dmyarray = Array[1..n] Of omyarray;
Var v : omyarray;
a : dmyarray;

В данном случае переменная v объявлена как одномерный массив из трёх элементов вещественного типа. Переменная а описана как двумерный массив из двух строк, каждую из которых включено по три элемента.

Способ 2. Описание массива А можно сократить, исключив определение типа omyarray в определении типа dmyarray:

Const n = 2; m = 3;
Type dmyarray = Array[1..n, 1..m] Of ;
Var a : dmyarray.

Способ 3. Ещё более краткое описание массива А можно получить, указывая имя массива и диапазоны изменения индексов для каждой размерности массива:

Const n = 2; m = 3;
Type dmyarray = Array[1..n, 1..m] Of ;

Var a : dmyarray.

Если указанный тип используется для определения одного массива в программе, то удобно объявление массива в разделе описания переменных:

Var a: Array [1..n, 1..m] Of .

Рассмотренные выше методы решения задач обработки одномерных массивов могут применяться для обработки двумерных массивов. Поскольку положение элемента в двумерном массиве описывается двумя индексами [первый — номер строки, второй — номер столбца], программы большинства матричных задач строятся на основе вложенных циклов. Обычно внешний цикл работает по строкам матрицы, то есть с его помощью выбирается требуемая строка матрицы, а внутренний цикл — по столбцам матрицы, то есть здесь выбирается нужный элемент из выбранной уже строки. Для задания значений элементам массива могут быть использованы операторы присваивания и операторы ввода данных.

Пример 1

В приведённом ниже примере осуществляется ввод и вывод двумерного массива А размерностью 10*15. Формирование и вывод массива описаны в виде двух процедур, которые вызываются последовательно из основной программы. Надо заметить, что формирование двумерного массива можно осуществлять всеми тремя способами, описанными для одномерных массивов, то есть: ввод с клавиатуры, через генератор случайных чисел или с помощью файла. Пусть в нашем примере элементы задаются генератором случайных чисел.

Program Example_45;
Const n = 2; m = 15;
Type dmyarray = Array[1..n., 1..m] Of Integer;
Var A : dmyarray;

Procedure Init(Var x: dmyarray); <процедура формирования массива>
Var i, j : Integer;
Begin
For i:=1 To n Do
For j:=1 To m Do
x[i,j]:=-25+Random(51);
End;

Procedure Print(x: dmyarray); <процедура вывода массива на экран>
Var i, j : Integer;
Begin
For i:=1 To n Do
Begin <ввод i-ой строки массива>
For j:=1 To n Do Write(x[i,j]:5);
Writeln; <переход на начало следующей строки>
End;

При решении задач с двумерными массивами можно выделить несколько видов задач.

Найти сумму элементов

Можно найти сумму всех элементов, можно только некоторых, которые удовлетворяют данному условию. Но мы рассмотрим более сложный пример.

Пример 2

Сформировать одномерный массив, каждый элемент которого равен сумме отрицательных элементов соответствующей строки заданной целочисленной матрицы.

Опишем одномерный массив, размерность которого равна количеству строк в двумерном массиве.

Const n = 10; m = 15;
Type omyarray = Array[1..n] Of Integer;
dmyarray = Array[1..n, 1..m] Of Integer
Var B : omyarray;
A : dmyarray;

Формирование одномерного массива по заданному правилу опишем в виде процедуры. Ей будем передавать два параметра — двумерный массив и одномерный, который является результатом. В теле процедуры будут использоваться вложенные циклы. Внешний цикл в ней определяет номер строки, который совпадает с номером элемента одномерного массива. Здесь же задаются начальные значения элементов одномерного массива, равные 0. Во внутреннем цикле анализируется каждый элемент выбранной строки, и если он отрицательный, то добавляется к сумме всех предыдущих отрицательных элементов выбранной строки матрицы.

Procedure Sum(x: dmyarray; Var y: omyarray);
Var i, j : Integer;
Begin
For i:=1 To n Do
Begin
y[i]:=0; <задание начальных значений элементов массива суммы>
For j:=1 To m Do<накопление суммы отрицательных>
If x[i,j]

Читайте также:  Способы рафинации масла бывают

В основной программе обращаемся к процедуре Sum(A,B) и остается только вывести на экран одномерный массив В, в котором записаны суммы отрицательных элементов каждой строки.

Нахождение количества элементов с данным свойством

Задачи на нахождение номеров элементов с заданными свойствами и на нахождение количества таких элементов во всём массиве останутся практически такими же. В них только добавится второй цикл или вывод двух индексов вместо одного.

Пример 3

Найти максимальный элемент массива и его индексы.

Так как элементы могут повторяться, то договоримся, что будем запоминать только индексы первого максимального элемента. Опишем процедуру, которой передаётся массив, и её результатом является значение максимального элемента и индексы первой встречи такого значения.

Procedure Maximum(x: dmyarray; Var max, maxi, maxj: Integer);
Var i,j: Integer;
Begin <начальные значения>
max:=x[1,1]; maxi:=1;maxj:=1;
For i:=1 To n Do
For j:=1 To m Do
If x[i,j]>max Then <присвоение новых значений>
Begin
max:=x[i,j];
maxi:=i;maxj:=j;
End;
End;

Пример 4

Найти количество отрицательных элементов в каждой строке.

Рассмотрим несколько способов решения этой задачи.

Способ 1 — количество элементов каждой строки хранить в одномерном массиве соответствующей размерности. Тогда можно описать такую процедуру:

Procedure Q_1(x: dmyarray; Var y: omyarray);
Var i, j : Integer;
Begin
For i:=1 To n Do
Begin
y[i]:=0
For j:=1 To m Do
If x[i,j]

Способ 2 — использовать счётчик, находить количество элементов строки и выводить значение на экран. Тогда:

Procedure Q_2(x: dmyarray);
Var i, j, k : Integer;
Begin
For i:=1 To n Do
Begin
k:=0
For j:=1 To m Do
If x[i,j]

Работа с несколькими массивами

Пример 5

Составить программу вычисления произведения двух квадратных целочисленных матриц А и В размером 5*5 соответственно. Элементы результирующей, также целочисленной, матрицы С (размером 5*5) определяются по формуле

c[i, j] =

где n — размерность матриц А и В.

Формирование матриц будем производить с помощью генератора случайных чисел, вычисление элементов результирующей матрицы С — с помощью вложенных циклов, где во внутреннем цикле (по параметру k) будет накапливаться сумма, определяющая элемент с[i,j].

Program Exampl_46;
Const n = 5;
Type dmyarray = Array[1..n, 1..n] Of Integer;
Var A, B, C : dmarray;

Procedure Init(Var x: dmyarray);

Procedure Print(x: dmyarray);

Procedure Mult(x,y: dmyarray; Var z: dmyarray);
Var k, i, j : Integer;
Begin
For i:=1 To n Do
For j:=1 To m Do
Begin
z[i,j]:=0;
For k:=1 To n Do z[i,j]:=z[i,j]+x[i,j]*y[k,j];
End;
End;

Begin <основная программа>
Writeln(‘массив А:’); Init(A); Print(A);
Writeln(‘массив В:’); Init(B); Print(B);
Mult(A, B, C);
Writeln(‘массив С:’); Print(c);
Readln;
End.

Определить, отвечает ли заданный массив некоторым требованиям

Пример 6

Определить, есть ли в данном массиве элемент, равный 0.

Опишем логическую функцию, значение которой равно истине, если такой элемент есть, и ложь — в противном случае. Самый простой способ — это просматривать элементы, и если найден искомый, то присвоить функции значение True, иначе — False.

Пример 7

Определить, является ли данный квадратный массив симметричным относительно своей главной диагонали.

Если он является симметричным, то для него выполняется равенство a[i, j] = a[i, j] для всех i = 1. n и j = 1. n при условии, что i>j. Поэтому можно составить следующую функцию:

Function Check2(x: dmyarray): Boolean;
Var i, j : Integer;
t : Boolean;
Begin
t:= True; <предположим, что матрица симметрична>
i:=2;
While t And (i

Таким образом, если встретится хотя бы одна такая пара, что соответствующие элементы не будут равны, то значение функции будет ложь(false)

На главную страницу
(с)Все права защищены

По всем интересующим вопросам прошу писать на электронный адрес

Источник

Pascal-Паскаль

Программирование. Двумерные массивы Pascal-Паскаль

  • Скачено бесплатно: 18577
  • Куплено: 414
  • Pascal-Паскаль->Программирование. Двумерные массивы Pascal-Паскаль

Программирование. Двумерные массивы Pascal-Паскаль

Двумерные массивы Паскаля – матрицы

Двумерный массив в Паскале трактуется как одномерный массив, тип элементов которого также является массивом (массив массивов). Положение элементов в двумерных массивах Паскаля описывается двумя индексами. Их можно представить в виде прямоугольной таблицы или матрицы.

Рассмотрим двумерный массив Паскаля размерностью 3*3, то есть в ней будет три строки, а в каждой строке по три элемента:

Каждый элемент имеет свой номер, как у одномерных массивов, но сейчас номер уже состоит из двух чисел – номера строки, в которой находится элемент, и номера столбца. Таким образом, номер элемента определяется пересечением строки и столбца. Например, a 21 – это элемент, стоящий во второй строке и в первом столбце.

Описание двумерного массива Паскаля.

Существует несколько способов объявления двумерного массива Паскаля.

Мы уже умеем описывать одномерные массивы, элементы которых могут иметь любой тип, а, следовательно, и сами элементы могут быть массивами. Рассмотрим следующее описание типов и переменных:

Пример описания двумерного массива Паскаля

Мы объявили двумерный массив Паскаля m, состоящий из 10 строк, в каждой из которых 5 столбцов. При этом к каждой i -й строке можно обращаться m [ i ], а каждому j -му элементу внутри i -й строки – m [ i , j ].

Читайте также:  Способы классификации исторических источников

Определение типов для двумерных массивов Паскаля можно задавать и в одной строке:

Обращение к элементам двумерного массива имеет вид: M [ i , j ]. Это означает, что мы хотим получить элемент, расположенный в i -й строке и j -м столбце. Тут главное не перепутать строки со столбцами, а то мы можем снова получить обращение к несуществующему элементу. Например, обращение к элементу M [10, 5] имеет правильную форму записи, но может вызвать ошибку в работе программы.

Основные действия с двумерными массивами Паскаля

Все, что было сказано об основных действиях с одномерными массивами, справедливо и для матриц. Единственное действие, которое можно осуществить над однотипными матрицами целиком – это присваивание. Т.е., если в программе у нас описаны две матрицы одного типа, например,

то в ходе выполнения программы можно присвоить матрице a значение матрицы b ( a := b ). Все остальные действия выполняются поэлементно, при этом над элементами можно выполнять все допустимые операции, которые определены для типа данных элементов массива. Это означает, что если массив состоит из целых чисел, то над его элементами можно выполнять операции, определенные для целых чисел, если же массив состоит из символов, то к ним применимы операции, определенные для работы с символами.

Ввод двумерного массива Паскаля.

Для последовательного ввода элементов одномерного массива мы использовали цикл for, в котором изменяли значение индекса с 1-го до последнего. Но положение элемента в двумерном массиве Паскаля определяется двумя индексами: номером строки и номером столбца. Это значит, что нам нужно будет последовательно изменять номер строки с 1-й до последней и в каждой строке перебирать элементы столбцов с 1-го до последнего. Значит, нам потребуется два цикла for , причем один из них будет вложен в другой.

Рассмотрим пример ввода двумерного массива Паскаля с клавиатуры:

Пример программы ввода двумерного массива Паскаля с клавиатуры

Двумерный массив Паскаля можно заполнить случайным образом, т.е. использовать функцию random (N), а также присвоить каждому элементу матрицы значение некоторого выражения. Способ заполнения двумерного массива Паскаля выбирается в зависимости от поставленной задачи, но в любом случае должен быть определен каждый элемент в каждой строке и каждом столбце.

Вывод двумерного массива Паскаля на экран.

Вывод элементов двумерного массива Паскаля также осуществляется последовательно, необходимо напечатать элементы каждой строки и каждого столбца. При этом хотелось бы, чтобы элементы, стоящие в одной строке, печатались рядом, т.е. в строку, а элементы столбца располагались один под другим. Для этого необходимо выполнить следующую последовательность действий (рассмотрим фрагмент программы для массива, описанного в предыдущем примере):

Пример программы вывода двумерного массива Паскаля

Замечание (это важно!): очень часто в программах студентов встречается ошибка, когда ввод с клавиатуры или вывод на экран массива пытаются осуществить следующим образом: readln (a), writeln (a), где а – это переменная типа массив. При этом их удивляет сообщение компилятора, что переменную этого типа невозможно считать или напечатать. Может быть, вы поймете, почему этого сделать нельзя, если представите N кружек, стоящих в ряд, а у вас в руках, например, чайник с водой. Можете вы по команде «налей воду» наполнить сразу все кружки? Как бы вы ни старались, но в каждую кружку придется наливать отдельно. Заполнение и вывод на экран элементов массива также должно осуществляться последовательно и поэлементно, т.к. в памяти ЭВМ элементы массива располагаются в последовательных ячейках.

Представление двумерного массива Паскаля в памяти

Элементы абстрактного массива в памяти машины физически располагаются последовательно, согласно описанию. При этом каждый элемент занимает в памяти количество байт, соответствующее его размеру. Например, если массив состоит из элементов типа integer , то каждый элемент будет занимать по два байта. А весь массив займет S^2 байта, где S – количество элементов в массиве.

А сколько места займет массив, состоящий из массивов, т.е. матрица? Очевидно: S i^S j , где S i — количество строк, а S j – количество элементов в каждой строке. Например, для массива типа

потребуется 12 байт памяти.

Как будут располагаться в памяти элементы этого массива? Рассмотрим схему размещения массива M типа matrix в памяти.

Под каждый элемент M [i,j] типа integer выделяется две ячейки памяти. Размещение в памяти осуществляется «снизу вверх». Элементы размещаются в порядке изменения индекса, что соответствует схеме вложенных циклов: сначала размещается первая строка, затем вторая, третья. Внутри строки по порядку идут элементы: первый, второй и т.д.

Как мы знаем, доступ к любой переменной возможен, только если известен адрес ячейки памяти, в которой хранится переменная. Конкретная память выделяется для переменной при загрузке программы, то есть устанавливается взаимное соответствие между переменной и адресом ячейки. Но если мы объявили переменную как массив, то программа «знает» адрес начала массива, то есть первого его элемента. Как же происходит доступ ко всем другим элементам массива? При реальном доступе к ячейке памяти, в которой хранится элемент двумерного массива, система вычисляет ее адрес по формуле:

Читайте также:  Дюфалак дозы взрослым способ применения

где Addr – фактический начальный адрес, по которому массив располагается в памяти; I , J – индексы элемента в двумерном массиве; SizeElem – размер элемента массива (например, два байта для элементов типа integer ); Cols – количество элементов в строке.

Выражение SizeElem * Cols *( I -1)+ SizeElem *( J -1) называют смещением относительно начала массива.

Сколько памяти выделяется для массива?

Рассмотрим не столько вопрос о том, сколько памяти выделяется под массив (это мы разобрали в предыдущем разделе), а о том, каков максимально допустимый размер массива, учитывая ограниченный объем памяти.

Для работы программы память выделяется сегментами по 64 Кбайт каждый, причем как минимум один из них определяется как сегмент данных. Вот в этом-то сегменте и располагаются те данные, которые будет обрабатывать программа. Ни одна переменная программы не может располагаться более чем в одном сегменте. Поэтому, даже если в сегменте находится только одна переменная, описанная как массив, то она не сможет получить более чем 65536 байт. Но почти наверняка, кроме массива в сегменте данных будут описаны еще некоторые переменные, поэтому реальный объем памяти, который может быть выделен под массив, находится по формуле: 65536- S , где S – объем памяти, уже выделенный под другие переменные.

Зачем нам это знать? Для того чтобы не удивляться, если при компиляции транслятор выдаст сообщение об ошибке объявления слишком длинного массива, когда в программе встретит описание (правильное с точки зрения синтаксиса):

Вы уже знаете, что, учитывая двухбайтовое представление целых чисел, реально можно объявить массив с количеством элементов равным 65536/2 –1=32767. И то лишь в том случае, если других переменных не будет. Двумерные массивы должны иметь еще меньшие границы индексов.

Примеры решения задач с двумерными массивами Паскаля

Задача: Найти произведение ненулевых элементов матрицы.

Решение:

  • Для решения данной задачи нам потребуются переменные: матрица, состоящая, например, из целочисленных элементов; P – произведение элементов, отличных от 0; I , J – индексы массива; N , M – количество строк и столбцов в матрице.
  • Входными данными являются N , M – их значения введем с клавиатуры; матрица – ввод матрицы оформим в виде процедуры, заполнение матрицы осуществим случайным образом, т.е. с помощью функции random ().
  • Выходными данными будет являться значение переменной P (произведение).
  • Чтобы проверить правильность выполнения программы, необходимо вывести матрицу на экран, для этого оформим процедуру вывода матрицы.
  • Ход решения задачи:

обсудим сначала выполнение основной программы, реализацию процедур обговорим чуть позже:

  • введем значения N и M ;
  • Введем двумерный массив Паскаля, для этого обращаемся к процедуре vvod ( a ), где а – матрица;
  • Напечатаем полученную матрицу, для этого обращаемся к процедуре print ( a );
  • Присвоим начальное значение переменной P =1;
  • Будем последовательно перебирать все строки I от 1-й до N -й, в каждой строке будем перебирать все столбцы J от 1-го до M -го, для каждого элемента матрицы будем проверять условие: если a ij ? 0, то произведение P будем домножать на элемент a ij ( P = P * a ij );
  • Выведем на экран значение произведения ненулевых элементов матрицы – P ;

А теперь поговорим о процедурах.

Замечание (это важно!) Параметром процедуры может быть любая переменная предопределенного типа, это означает, что для передачи в процедуру массива в качестве параметра, тип его должен быть описан заранее. Например :

Вернемся теперь к нашим процедурам.

Процедура ввода матрицы называется vvod , параметром процедуры является матрица, причем она должна быть, как результат, передана в основную программу, следовательно, параметр должен передаваться по ссылке. Тогда заголовок нашей процедуры будет выглядеть так:

Для реализации вложенных циклов в процедуре нам потребуются локальные переменные-счетчики, например, k и h . Алгоритм заполнения матрицы уже обсуждался, поэтому не будем его повторять.

Процедура вывода матрицы на экран называется print , параметром процедуры является матрица, но в этом случае она является входным параметром, следовательно, передается по значению. Заголовок этой процедуры будет выглядеть следующим образом:

И вновь для реализации вложенных циклов внутри процедуры нам потребуются счетчики, пусть они называются так же – k и h . Алгоритм вывода матрицы на экран был описан выше, воспользуемся этим описанием.

Пример программы двумерного массива Паскаля

Программирование

Исходники Pascal (127)

Справочник

Справочник по паскалю: директивы, функции, процедуры, операторы и модули по алфавиту

Источник

Оцените статью
Разные способы