Движение медузы реактивным способом

Медуза: умный охотник, лишенный мозга

У неё нет сердца, костей, глаз и мозга. Она на 95% состоит из воды, но при этом остается самым активным морским хищником.

Это необычное существо – медуза, 1 беспозвоночное животное, принадлежащее к типу Кишечнополостные (тот же тип, к которому относятся и кораллы).

Читайте также: Кораллы фото

Тело медузы состоит из желеобразного колокола, щупалец и ротовых полостей, используемых для поедания добычи. Медуза получила свое название благодаря сходству с мифической Медузой Горгоной, у которой из головы вместо волос торчали змеи.

Существует более 200 видов медуз (класс Кубомедузы) разных размеров: от крошечных карибских медуз до арктических цианей, колокол которых достигает 2,5 м в диаметре, длина щупалец составляет примерно 60 м (в 2 раза длиннее синего кита), а вес – более 250 кг.

Как медузы передвигаются

Одни медузы плавают, используя реактивное движение, а другие прикрепляются к другим объектам, к примеру, к морским водорослям. Несмотря на использование реактивного движения, медузы всё же не настолько хорошо плавают, чтобы преодолеть силу волн и течений.

Реактивное движение медузы совершается благодаря наличию корональных мышц, выстилающих нижнюю часть её колокола. Когда эти мышцы выталкивают воду из колокола, происходит отдача, толкающая тело в противоположную сторону.

У медузы нет мозга и глаз, поэтому она полностью полагается на нервные клетки, помогающие ей двигаться, реагировать на пищу и опасность. Органы чувств подсказывают медузе, в каком направлении двигаться, а также определяют источник света.

С помощью особых мешков, расположенных на ободке колокола, медузы прекрасно балансируют в воде. Когда тело медузы переваливается на бок, мешки заставляют нервные окончания сокращать мышцы, и тело медузы выравнивается.

Охотники

Несмотря на безобидный внешний вид, медузы – замечательные охотники. Они жалят и убивают своих жертв особыми стрекательными клетками, нематоцистами. Внутри каждой клетки находится маленький гарпун. В результате прикосновения или движения он выпрямляется и стреляет в добычу, впрыскивая в неё яд. Степень ядовитости этого токсина зависит от вида медузы. Реакции на яд могут быть также разные: от небольшой сыпи до летального исхода.

Медузы не охотятся на людей. Они предпочитают питаться микроскопическими организмами, рыбами и другими медузами. Люди могут случайно пострадать только тогда, когда медузы попадают в прибрежную зону.

Медуза, плавающая в морских просторах, может быть как хищником, так и добычей. Благодаря своей прозрачности, она отлично маскируется и почти незаметна в воде. Это важно, так как, несмотря на реактивное движение, эти организмы всецело находятся во власти течения, а в открытом море, как известно, спрятаться негде.

Жизненный цикл

Начало жизненного цикла медуз очень похоже, хотя и не полностью, на начало развития кораллов. Личинки плавают в воде, пока не находят твердую поверхность (камень или раковину), на которую прикрепляются. Прикрепившиеся личинки растут и преобразуются в полипы, которые на этой стадии напоминают морские анемоны.

Затем в полипах начинают формироваться горизонтальные бороздки. Они углубляются до тех пор, пока полип не превращается в стопку из отдельных, похожих на блины, полипов. Эти плоские полипы один за другим откалываются от стопки и отплывают. С этого момента отколовшийся полип похож на взрослую медузу.

У медуз короткий жизненный цикл. Наиболее живучие виды доживают до 6 месяцев. Эти существа обычно погибают в морских водах или становятся добычей других хищников. Луна-рыба и кожистая черепаха – наиболее опасные хищники, питающиеся медузами (Исследователям неизвестно, каким образом черепахи и рыбы могут съедать медуз вместе с ядовитыми нематоцистами, не причиняя себе вреда).

Читайте также:  Технология ксо коллективные способы обучения это

Несмотря на свою невероятную хрупкость, медузы достаточно сложно устроены. Дыхание этих кишечнополостных осуществляется посредством всей поверхности тела. Оно способно поглощать кислород и выделять углекислый газ.

Другие «медузы»

В море обитает множество других существ, которые хоть и называются медузами, но ими не являются. Один из таких видов – португальский кораблик, очень похожий на медузу.

Гребневики выглядят и ведут себя как медузы, но всё же не являются «настоящими медузами», поскольку не имеют стрекательных клеток. Медузы заселяют моря и океаны по всему миру. Чаще всего они обитают в прибрежных зонах, хотя известны и глубоководные виды, производящие фантастический свет благодаря биолюминесценции.

Эволюционная тайна

Учитывая сложность анатомического строения и способ охоты этих морских существ, трудно представить, каким образом могли выживать переходные формы между немедузами и современными медузами. Медузы появляются в летописи окаменелостей внезапно и без переходных форм.

Для выживания важны все особенности медузы: мешки, помогающие им плавать в правильном направлении, органы чувств, предупреждающие их о приближении хищника или добычи, и жалящие нематоцисты. Поэтому вполне логично заключить, что любая переходная форма, лишенная этих полностью развитых признаков, быстро привела бы к вымиранию вида. Факты указывают на то, что медузы всегда была медузами с момента их Сотворения Богом на 5-й день недели Сотворения (Бытие 1:21).

Ссылки и примечания

  1. Если не указано иное, вся информация взята из Национального аквариума в Балтиморе, ; . Вернуться к тексту.

Источник

БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ

Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе. Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки, предприимчивая личинка стрекозы-коромысла, восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.

По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе 😉

Реактивный способ движения медуз

Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи, функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м). Большинство медуз двигаются реактивным способом, выталкивая воду из полости зонтика.

Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги, обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида: Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.

Реактивное бегство морских моллюсков гребешков

Морские моллюски гребешки, обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения, они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством, морская звезда обхватывает его своими руками, вскрывает раковину и поедает…

Читайте также:  Логические задачи табличный способ презентация

Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).

Реактивный насос личинки стрекозы-коромысла

Нрав у личинки стрекозы-коромысла, или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса. Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения, личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.

Реактивные импульсы нервной «автострады» кальмаров

Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени, необходима повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель. Такая большая проводимость возможна при большом диаметре нерва.

Известно, что у кальмаров самые крупные в животном мире нервные волокна. В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с. А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм. Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч.

Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает, – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»

Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой».

Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м, включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м).

Реактивный двигатель кальмара

Реактивное движение, используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам. Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров. Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу 😉

В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель. Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты, в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б).

Читайте также:  Удержание как способ обеспечения исполнения обязательств кратко

При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя.

«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.

На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.

Реактивный двигатель кальмара очень экономичен, благодаря чему он может достигать скорости 70 км/ч; некоторые исследователи считают, что даже 150 км/ч!

Инженеры уже создали двигатель, подобный реактивному двигателю кальмара: это водомёт, действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя, подобного воздушно-реактивному

Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист, кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР, в атласы животных и в учебные пособия.

Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии, автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных».

Материалы этой статьи полезно будет применить не только на уроках физики и биологии, но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.

Литература:
§ Кац Ц.Б. Биофизика на уроках физики
Москва: издательство «Просвещение», 1988
§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988

Источник

Оцените статью
Разные способы