Другие способы умножения чисел

Нетрадиционные способы умножения многозначных чисел

Введение 3
Глава 1. Альтернативные способы умножения 4
1.1. Немного истории 4
1.2. Русский крестьянский способ умножения 4
1.3. Умножение способом «Маленький замок» 5
1.4. Умножение чисел методом «ревность» или «решётчатое умножение» 5
1.5. Китайский способ умножения 5
1.6. Японский способ умножения 6
1.7. Таблица Оконешникова 6
1.8.Умножение столбиком. 7
Глава 2. Практическая часть 7
2.1. Крестьянский способ 7
2.2. Маленький замок 7
2.3. Умножение чисел методом «ревность» или «решётчатое умножение» 7
2.4. Китайский способ 8
2.5. Японский способ 8
2.6. Таблица Оконешникова 8
2.7. Анкетирование 8
Заключение 9
Приложение 10

«Предмет математики настолько серьезен, что полезно не упускать случаев делать его немного занимательным».
Б. Паскаль

Введение
Человеку в повседневной жизни невозможно обойтись без вычислений. Поэтому на уроках математики нас в первую очередь учат выполнять действия над числами, то есть считать. Умножаем, делим, складываем и вычитаем мы привычными для всех способами, которые изучаются в школе. Возник вопрос: а есть ли еще какие-нибудь альтернативные способы вычислений? Мне захотелось изучить их более подробно. В поисках ответа на возникшие вопросы было проведено данное исследование.
Цель исследования: выявление нетрадиционных способов умножения для изучения возможности их применения.
В соответствии с поставленной целью нами были сформулированные следующие задачи:
— Найти как можно больше необычных способов умножения.
— Научиться их применять.
— Выбрать для себя самые интересные или более легкие, чем те, которые предлагаются в школе, и использовать их при счете.
— Проверить на практике умножения многозначных чисел.
— Провести анкетирование учащихся 4-х классов
Объект исследования: различные нестандартные алгоритмы умножения многозначных чисел
Предмет исследования: математическое действие «умножение»
Гипотеза: если существуют стандартные способы умножения многозначных чисел, возможно, есть и альтернативные способы.
Актуальность: распространение знаний об альтернативных способах умножения.
Практическая значимость. В ходе работы было решено множество примеров и создан альбом, в который включены примеры с различными алгоритмами умножениями многозначных чисел несколькими альтернативными способами. Это может заинтересовать одноклассников для расширения математического кругозора и послужит началом новых экспериментов.

Источник

Проект на тему: «Необычные способы умножения»

МБОУ «СОШ с. Вольное» Харабалинский район Астраханская область

« Необычные способы умножен ия »

ученики 5 класса :

Р уководитель проекта :

Вольное 201 6 год .

«Все есть число» Пифагор

В 21 веке невозможно представить себе жизнь человека, не производящего вычислений: это и продавцы, и бухгалтера, и обыкновенные школьники.

Изучение почти любого предмета в школе предполагает хорошие знания математики, и без нее нельзя освоить эти предметы. Две стихии господствуют в математике — числа и фигуры с их бесконечным многообразием свойств и действий с ними.

Нам захотелось больше узнать об истории возникновения математических действий. Сейчас, когда стремительно развивается вычислительная техника, многие не хотят утруждать себя счётом в уме. Поэтому мы решили показать не только то, что сам процесс выполнения действий может быть интересным, но и что, хорошо усвоив приёмы быстрого счёта, можно поспорить с ЭВМ.

Актуальность данной темы заключается в том, что использование нестандартных приёмов в формировании вычислительных навыков усиливает интерес учащихся к математике и содействует развитию математических способностей.

И зучить некоторые нестандартные приёмы умножения и показать, что их применение делает процесс вычисления рациональным и интересным и для вычисления которыми, достаточно устного счета или применения карандаша, ручки и бумаги.

Е сли наши предки умели умножать старинными способами, то если изучив по данной проблеме литературу, сможет ли современный школьник этому научиться, или нужны какие-то сверхъестественные способности.

1. Найти необычные способы умножения.

Читайте также:  Способы совершенствования средств общения

2. Научиться их применять.

3. Выбрать для себя самые интересные или более легкие, чем те которые предлагаются в школе, и использовать их при счете.

4. Научить одноклассников применять новы е способ ы умножения.

Объект исследования : математическое действие умножение

Предмет исследования : способы умножения

— поисковый метод с использованием научной и учебной литературы, интернета;

— исследовательский метод при определении способов умножения;

— практический метод при решении примеров;

— — анкетирование респондентов о знании нестандартных способов умножения.

Встречаются люди с необыкновенными способностями, которые по быстроте устных вычислений могут состязаться с ЭВМ. Их называют «чудо — счётчиками». И таких людей немало.

Рассказывают, что отец Гаусса, рассчитываясь со своими рабочими в конце недели, прибавлял оплату к каждому дневному заработку за сверхурочные часы. Однажды после того как Гаусс-отец закончил расчёты, следивший за операциями отца ребёнок, которому было 3 года, воскликнул: «Папа, подсчёт не верен! Вот такая должна быть сумма!» Вычисления повторили и с удивлением убедились, что мальчик указал правильную сумму.

В России в начале XX века блистал своими умениями «волшебник вычислений» Роман Семенович Левитан, известный под псевдонимом Арраго. Уникальные способности стали проявляться у мальчика уже в раннем возрасте. За несколько секунд он возводил в квадрат и куб десятизначные числа, извлекал корни разной степени. Казалось, всё это он делал с необычайной легкостью. Но эта легкость была обманчива и требовала большой работы мозга.

В 2007 году Марк Вишня, которому тогда было 2,5 года, поразил всю страну своими интеллектуальными способностями. Юный участник шоу «Минута славы» без труда считал в уме многозначные числа, опережая при вычислениях родителей и жюри, которые пользовались калькуляторами. Уже в два года он освоил таблицу косинусов и синусов, а также некоторые логарифмы.

В институте кибернетики Украинской академии наук проводились соревнования ЭВМ и человека. В соревновании участвовал молодой счётчик-феномен Игорь Шелушков и ЗВМ «Мир». Машина за несколько секунд сделала множество сложных операций, но победителем оказался Игорь Шелушков.

В Сиднейском университете в Индии тоже проходили соревнования человека и машины. Шакунтала Деви тоже опередила ЭВМ.

Большинство таких людей обладает прекрасной памятью и имеют дарование. Но некоторые из них никакими особыми способностями к математике не обладают. Они знают секрет! А секрет этот в том, что они усвоили приёмы быстрого счёта, запомнили несколько специальных формул. Значит, и мы тоже можем, пользуясь этими приёмами, быстро и точно считать.

Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.

Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия.

Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления — приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.

В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».

И все эти приемы умножения — «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.

Давайте рассмотрим наиболее интересные и простые способы умножения.

Источник

Способы умножения в разных странах: от древности к современности

Способы умножения в разных странах: от древности к современности

Читайте также:  По запасам нефти занимает место нефть добывается способом

Помните школьные уроки по математике, когда мы учились умножению без калькулятора? В столбик! Достаточно простой способ, не так ли? А вы знали, что в разных странах свои схемы умножения «вручную»? Предлагаю узнать самые популярные способы умножения в разных странах, начиная с древних и заканчивая современными.

Русский способ умножения

Русский способ заключается во всем известном умножении в столбик. Например, возьмем число 1234 и умножим на 56789:

Берем второе число и крайнюю справа цифру (9), умножаем на каждое число из верхнего ряда в порядке справа налево (4, 3, 2 и 1). Результат записываем под каждой цифрой из второго ряда.

Тоже самое делаем со следующей цифрой второго ряда. Но комбинацию чисел записываем уже отступив на одну единицу влево. Смотрите на изображение ниже.

Складываем по столбикам цифры и «сносим» числа вниз. Наш готовый ответ — 70077626.

Японский способ умножения

Японский метод очень похож на китайский. Однако, есть некоторые отличия. Используются не только линии, но и круги. Умножим 12*34:

Смотрим на второй множитель — это двузначное число, поэтом рисуем 2 разделенных круга.

Смотрим на вторую цифру первого множителя (в нашем случае 2) и рисуем два двоичных круга.

Второй множитель состоит из цифр 3 и 4, поэтому делим кружки первого столбика на 3 части, а второго — на 4.

Ответ кроется в количестве частей, которые получились после разделения. Наш результат — 408.

Китайский способ умножения

Основа китайского метода заключается в рисовании линий «сеткой». Преимуществом является графическая визуализация процесса умножения. Основная суть способа — параллельные и перпендикулярные линии представляют те числа, которые перемножаются между собой. Рассмотрим на «живом» примере «25*15»:

Необходимо нарисовать 2 параллельные линии и через некоторое расстояние еще 5 параллельных.

Перпендикулярно им рисуем 1 линию и на небольшом расстоянии еще 5.

Считаем количество точек-пересечений, как указано на схеме.

Если получились двузначные числа, первый знак числа мы прибавляем к «соседнему» с левой стороны. Вторые знаки в числах и являются результатом умножения.

Собираем числа в одно целое и получаем наш ответ: 25*15=375.

Индийский способ умножения

Индийский метод получил название способ Ферроли. Суть способа заключается в перемножении единиц множителей в определенном порядке. На наглядном примере будет понятно, как это сделать. Умножаем 29 на 11:

Перемножаем вторые цифры из каждого числа: 9*1 = 9.

Умножаем первую цифру первого числа на вторую цифру второго числа. Перемножаем вторую цифру первого числа на первую цифру второго числа. Складываем полученные результаты:
2*1 + 9*1 = 11. В данном случае первую цифру оставляем здесь, а вторая уходит на следующую строчку. Здесь остается 1.

Перемножаем первые цифры числе между собой: 2*1 = 2 + 1 (из верхней строчки) = 3.

Собираем число в обратном порядке — 319.

Итальянский способ умножения

Итальянский вариант умножения называется «джелозия» или способ решетки. На самом деле этот метод был изобретен в Индии, но со временем мигрировал в Китай, Аравию и Италию, где и получил свою форму «решетки», напоминающую окно.

Сейчас расскажу, как можно умножить 23*41:

Рисуем прямоугольник и делим его на 4 клетки (в нашем случае, а вообще по клетке на цифру).

Над каждой клеткой подписываем цифры по порядку: 2, 3, 4, 1.

Делим каждую клетку на две части, по диагонали.

Умножаем первые цифры каждого числа (2 на 4), в первом и втором треугольниках пишем 0 и 8.

Умножаем вторую цифру первого числа на первую второго числа (3 на 4), в первом и втором треугольниках пишем 1 и 2.

Умножаем вторые цифры каждого числа (3 на 1), в первом и втором треугольниках пишем 0 и 3.

Умножаем первую цифру первого числа на вторую цифру второго (2 на 1), в первом и втором треугольниках пишем 0 и 2.

Читайте также:  Способ защиты гражданских прав понятие классификация

Все клетки заполнились и теперь нужно сложить числа в определенной последовательности, как на рисунке ниже. Получаем результат — 943.

Старинные способы умножения

Старинный способ умножения легко осуществить с помощью пальцев. Мы можем умножить любое однозначное число на 9. Необходимо просто загнуть палец, который соответствует умножаемой цифре.

Например, умножаем 9 на 3 и загибаем третий палец левой руки. Считаем количество пальцев ДО загнутого (слева и справа). Слева — это первый знак числа, справа — второй. В нашем случае цифры 2 и 7 дают число 27.

Этим способом можно умножать и двузначные, и трехзначные числа, но по одной цифре из каждого числа, а затем складывать их.

Крестьянский способ умножения

Крестьянский способ заключается в умении делить и умножать любое число на 2. Рассмотрим на примере и умножим 47 на 35:

Пишем оба числа на одной прямой и рисуем между ними вертикальную прямую.

Число с левой стороны делим на 2, а с правой — умножаем на 2. Подобную манипуляцию проводим до момента, пока слева не останется 1.

Необходимо вычеркнуть строки, где слева стоят четные числа.

Числа, которые остались справа складываем и получаем результат. В нашем случае — 1645.

Египетский способ умножения

Египетский способ умножения нравится многим школьникам, так как достаточно прост и занимает меньше всего времени на выполнение вычислений. Необходимо разложить первое число на 3 единицы, а затем умножить каждое из них на второй множитель. Полученные результаты нужно сложить, это и будет искомое число.

Кому непонятно, смотрим на пример. Умножаем 13 на 238:

Чтобы получить 13 посредством сложения трех единичных цифр, нужно взять 1, 4 и 8.

Умножаем каждую из цифр на второй множитель (238).

1*238 = 238
4*238 = 952
8*238 = 1904.

Складываем полученные числа и получаем 3094 (238+952+1904).

Умножить на пальцах многозначные числа сложно, поэтому проще всего воспользоваться одним из вышеописанных методов. Мне, например, больше всех нравится русский и китайский способы. Они легкие и интересные.

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 807 человек из 76 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 284 человека из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 603 человека из 75 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-473694

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

В России выбрали топ-10 вузов по работе со СМИ и контентом

Время чтения: 3 минуты

Российский совет олимпиад школьников намерен усилить требования к олимпиадам

Время чтения: 2 минуты

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Российские школьники завоевали пять медалей на олимпиаде по физике

Время чтения: 1 минута

Минпросвещения работает над единым подходом к профилактике девиантного поведения детей

Время чтения: 1 минута

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Оцените статью
Разные способы