- Измерение ЭДС источника тока различными методами
- ИНФОФИЗ — мой мир.
- Как сказал.
- Вопросы к экзамену
- Я учу детей тому, как надо учиться
- Урок 31. Лабораторная работа № 08. Измерение ЭДС и внутреннего сопротивления источника тока.
- ИНФОФИЗ — мой мир.
- «Инфофиз» — это сайт для тех, кто учится сам и учит других
- Подготовка к ЕГЭ по физике
- Раздел «Программное обеспечение компьютерных сетей»
- Раздел «Информатика»
- Раздел «Физика»
- Как сказал.
- Вопросы к экзамену
- Законы и формулы
- Я учу детей тому, как надо учиться
- Новости и знаменательные даты
- Урок 31. Лабораторная работа № 08. Измерение ЭДС и внутреннего сопротивления источника тока.
Измерение ЭДС источника тока различными методами
Измерение ЭДС источника тока различными методами
Одним из необходимых условий существования электрического тока в цепи является наличие источника тока.
Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Внутри любого источника тока совершается работа по разделению разноимённых зарядов и накапливанию их на полюсах, в результате чего создаётся и поддерживается электрическое поле.
В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так. Более того, обычно используемые в быту источники электроэнергии по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока
Механический источник тока — механическая энергия преобразуется в электрическую энергию.
К ним относятся: электрофорная машина (диски машины приводятся во вращение в противоположных направлениях. В результате трения щеток о диски на кондукторах машины накапливаются заряды противоположного знака), динамо-машина, генераторы.
Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Например, термоэлемент — две проволоки из разных металлов необходимо спаять с одного края, затем нагреть место спая, тогда между другими концами этих проволок появится напряжение.
Применяются в термодатчиках и на геотермальных электростанциях.
Световой источник тока — энергия света преобразуется в электрическую энергию.
Например, фотоэлемент — при освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.
Применяются в солнечных батареях, световых датчиках, калькуляторах, видеокамерах.
Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую.
Например, гальванический элемент — в цинковый сосуд вставлен угольный стержень. Стержень помещен в полотняный мешочек, наполненный смесью оксида марганца с углем. В элементе используют клейстер из муки на растворе нашатыря. При взаимодействии нашатыря с цинком, цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.
Из нескольких гальванических элементов можно составить батарею.
Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания.
Аккумуляторы — в автомобилях, электромобилях, сотовых телефонах.
Магнитогидродинамический генератор (МГД — генератор) — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию
Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.
Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.
Сторонние силы — силы неэлектрической природы, вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонними считаются все силы отличные от кулоновских сил, т. е.
любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (кулоновские силы), называются сторонними силами.
Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движутся от положительного заряженного электрода к отрицательному), а во всей остальной цепи их приводит в движение электрическое поле.
Природа сторонних сил может быть разнообразна. В генераторах электростанций сторонняя сила – сила, действующая со стороны магнитного поля на электроны в движущемся проводнике. В гальваническом элементе сторонними силами являются химические силы. Например, элемент Вольта состоит из цинкового и медного электродом, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. Между цинковым и медным электродами появляется разность потенциалов, которая обуславливает ток в замкнутой электрической цепи.
В электрофорной машине сторонними сила являются силы трения.
В МГД сила Лоренца, действующая со стороны магнитного поля на движущиеся заряды.
Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (ЭДС).
Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
Методы определения ЭДС источника тока.
Прямой метод измерения ЭДС.
Собирая цепь по схеме:
Мы непосредственно измерили ЭДС источника тока при разомкнутом ключе. При замкнутом ключе вольтметр показал напряжение на внешнем участке цепи. Используя закон Ома для полной цепи, было рассчитано внутреннее сопротивление источника тока. Измерения проводились для трех батарей элементов.
Результаты измерения приведены в таблице №1:
Источник
ИНФОФИЗ — мой мир.
Весь мир в твоих руках — все будет так, как ты захочешь
Весь мир в твоих руках — все будет так, как ты захочешь
Как сказал.
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Я учу детей тому, как надо учиться
Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.
Урок 31. Лабораторная работа № 08. Измерение ЭДС и внутреннего сопротивления источника тока.
Лабораторная работа № 8
Тема: «Определение электродвижущей силы и внутреннего сопротивления источника тока ».
Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.
Оборудование: 1. Амперметр лабораторный;
2. Источник электрической энергии;
3. Соединительные провода,
4. Набор сопротивлений 2 Ом и 4 Ом;
5. Переключатель однополюсный; ключ.
Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.
Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.
Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):
ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.
Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].
Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи .
Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника и обозначают r.
Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е. ε = IR + Ir .
Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir — напряжение на внутреннем участке цепи.
Таким образом, для участка цепи, содержащего ЭДС:
Эта формула выражает закон Ома для полной цепи: сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.
ε и r можно определить опытным путем.
Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.
При последовательном соединении два соседних источника соединяются разноименными полюсами.
Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.
Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.
1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε 1 + ε 2 + ε 3
2 . Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников r батареи= r 1 + r 2 + r 3
Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε1, а сопротивление rбатареи= nr1
3. Сила тока в такой цепи по закону Ома
При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.
Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).
Параллельно соединяют только источники с одинаковой ЭДС. Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.
1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε 1= ε 2 = ε 3
2. Сопротивление батареи меньше, чем сопротивление одного источника r батареи= r 1/n
3. Сила тока в такой цепи по закону Ома
Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.
Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.
Источник
ИНФОФИЗ — мой мир.
Весь мир в твоих руках — все будет так, как ты захочешь
Весь мир в твоих руках — все будет так, как ты захочешь
«Инфофиз» — это сайт для тех, кто учится сам и учит других
Ведь «обучать — значит вдвойне учиться» (Ж.Жубер)
Подготовка к ЕГЭ по физике
Материалы для подготовки к ЕГЭ по физике
Раздел «Программное обеспечение компьютерных сетей»
Материал для изучения дисциплины «Программное обеспечение компьютерных сетей»
Раздел «Информатика»
Материалы для изучения дисциплины «Информатика»
Раздел «Физика»
Физика — одна из самых удивительных наук!
Надеюсь, данный раздел поможет Вам эффективно и интересно изучать физику.
Учите физику!
Как сказал.
Информация в чистом виде ‒ это не знание. Настоящий источник знания ‒ это опыт.
Альберт Эйнштейн
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Законы и формулы
Я учу детей тому, как надо учиться
Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.
Новости и знаменательные даты
Урок 31. Лабораторная работа № 08. Измерение ЭДС и внутреннего сопротивления источника тока.
Лабораторная работа № 8
Тема: «Определение электродвижущей силы и внутреннего сопротивления источника тока ».
Цель: научиться определять электродвижущую силу и внутреннее сопротивление источника электрической энергии.
Оборудование: 1. Амперметр лабораторный;
2. Источник электрической энергии;
3. Соединительные провода,
4. Набор сопротивлений 2 Ом и 4 Ом;
5. Переключатель однополюсный; ключ.
Возникновение разности потенциалов на полюсах любого источника является результатом разделения в нем положительных и отрицательных зарядов. Это разделение происходит благодаря работе, совершаемой сторонними силами.
Силы неэлектрического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.
При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.
Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q внутри источника тока к величине этого заряда, называется электродвижущей силой источника (ЭДС):
ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда.
Электродвижущая сила, как и разность потенциалов, измеряется в вольтах [В].
Чтобы измерить ЭДС источника, надо присоединить к нему вольтметр при разомкнутой цепи .
Источник тока является проводником и всегда имеет некоторое сопротивление, поэтому ток выделяет в нем тепло. Это сопротивление называют внутренним сопротивлением источника и обозначают r.
Если цепь разомкнута, то работа сторонних сил превращается в потенциальную энергию источника тока. При замкнутой цепи эта потенциальная энергия расходуется на работу по перемещению зарядов во внешней цепи с сопротивлением R и во внутренней части цепи с сопротивлением r , т.е. ε = IR + Ir .
Если цепь состоит из внешней части сопротивлением R и внутренней сопротивлением r, то, согласно закону сохранения энергии, ЭДС источника будет равна сумме напряжений на внешнем и внутреннем участках цепи, т.к. при перемещении по замкнутой цепи заряд возвращается в исходное положение , где IR – напряжение на внешнем участке цепи, а Ir — напряжение на внутреннем участке цепи.
Таким образом, для участка цепи, содержащего ЭДС:
Эта формула выражает закон Ома для полной цепи: сила тока в полной цепи прямо пропорциональна электродвижущей силе источника и обратно пропорциональна сумме сопротивлений внешнего и внутреннего участков цепи.
ε и r можно определить опытным путем.
Часто источники электрической энергии соединяют между собой для питания цепи. Соединение источников в батарею может быть последовательным и параллельным.
При последовательном соединении два соседних источника соединяются разноименными полюсами.
Т.е., для последовательного соединения аккумуляторов, к ″плюсу″ электрической схемы подключают положительную клемму первого аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к ″минусу″ электрической схемы.
Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой аккумуляторной батареи равно сумме напряжений входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.
1. ЭДС батареи равна сумме ЭДС отдельных источников ε= ε 1 + ε 2 + ε 3
2 . Общее сопротивление батареи источников равно сумме внутренних сопротивлений отдельных источников r батареи= r 1 + r 2 + r 3
Если в батарею соединены n одинаковых источников, то ЭДС батареи ε= nε1, а сопротивление rбатареи= nr1
3. Сила тока в такой цепи по закону Ома
При параллельном соединении соединяют между собой все положительные и все отрицательные полюсы двух или n источников.
Т.е., при параллельном соединении, аккумуляторы соединяют так, чтобы положительные клеммы всех аккумуляторов были подключены к одной точке электрической схемы (″плюсу″), а отрицательные клеммы всех аккумуляторов были подключены к другой точке схемы (″минусу″).
Параллельно соединяют только источники с одинаковой ЭДС. Получившаяся при параллельном соединении аккумуляторная батарея имеет то же напряжение, что и у одиночного аккумулятора, а емкость такой аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов. Т.е. если аккумуляторы имеют одинаковые емкости, то емкость аккумуляторной батареи равна емкости одного аккумулятора, умноженной на количество аккумуляторов в батарее.
1. ЭДС батареи одинаковых источников равна ЭДС одного источника. ε= ε 1= ε 2 = ε 3
2. Сопротивление батареи меньше, чем сопротивление одного источника r батареи= r 1/n
3. Сила тока в такой цепи по закону Ома
Электрическая энергия, накопленная в аккумуляторной батарее равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.
Внутреннее сопротивление аккумуляторов, изготовленных по одной технологии, примерно обратно пропорционально емкости аккумулятора. Поэтому т.к.при параллельном соединении емкость аккумуляторной батареи равна сумме емкостей входящих в нее аккумуляторов, т.е увеличивается, то внутреннее сопротивление уменьшается.
Источник