Способ концентрических сфер
Этот способ широко используется при решении задач на построение линий пересечения поверхностей вращения с пересекающимися осями. В основе этого способа лежит следующее свойство поверхностей вращения: две соосные поверхности вращения пересекаются по окружностям, число которых равно числу точек пересечения их полумеридианов. Эти окружности лежат в плоскостях, перпендикулярных оси поверхностей вращения. У сферы любой диаметр можно принять за ось вращения. Следовательно, сфера с центром на оси поверхности вращения пересекает эту поверхность по одной или нескольким окружностям.
Если ось поверхностей вращения параллельна плоскости проекций, то на эту плоскость линия пересечения проецируется в отрезок прямой линии. На рис. 53 а, б показано пересечение сферы цилиндрической и конической поверхностями вращения, соответственно. На рис. 53 в приведены пересекающиеся соосные цилиндрическая и коническая поверхности вращения.
Рис. 53 Пересечение соосных поверхностей вращения
Рассмотрим применение вспомогательных концентрических сфер − сфер с постоянным центром. Этот способ применяют при выполнении следующих условий:
а) пересекающиеся поверхности должны быть поверхностями вращения;
б) оси этих поверхностей должны пересекаться; точку их пересечения принимают за центр вспомогательных сфер;
в) плоскость симметрии поверхностей должна быть параллельна какой-либо плоскости проекций (в противном случае применяют преобразование чертежа).
Рассмотрим построение линии пересечения конических поверхностей вращения (рис. 54). Поверхности и их расположение удовлетворяют приведенным выше условиям.
Прежде чем строить промежуточные точки, необходимо найти опорные точки линии пересечения. Точки А, В, K и L, а также E, F, С и D – это точки, принадлежащие контурам поверхностей. Их можно найти способом концентрических сфер или с помощью плоскостей посредников Σ(Σ2) и Δ(Δ1).
Рассмотрим теперь построение промежуточных точек на примере точек 5 и 6. Построения выполняем на фронтальной плоскости проекций. Сфера посредник Θ(Θ2) с центром в точке О(О2) пересекает конические поверхности по окружностям, которые на П2 проецируются в отрезки и
(проекции двух других окружностей не показаны). Точки 52 = 62 их пересечения являются фронтальными проекциями точек 5 и 6, которые принадлежат линии пересечения поверхностей, так как принадлежат каждой из этих поверхностей.
Горизонтальные проекции точек 5 и 6 находим из условия принадлежности точки поверхности. В данном случае используется принадлежность точек окружности m i на «вертикальной» конической поверхности. Точки 52 и 62 находятся по линии проекционной связи на .
Аналогично можно построить любое количество точек искомой линии пересечения. Однако нужно иметь в виду, что не все сферы могут быть использованы для решения задачи.
Рис. 54 Применение способа вспомогательных концентрических сфер
Рассмотрим предельные границы вспомогательных сфер. Радиус сфер посредников изменяется в диапазоне Rmax ≥ R ≥ Rmin, где Rmin – минимальный радиус сферы, Rmax – максимальный радиус сферы. Сфера минимального радиуса Rmin – это сфера, которая касается одной поверхности и пересекает другую. На рис. 54 такая сфера касается «вертикальной» конической поверхности. С помощью сферы минимального радиуса построены точки 12 = 22 и 32 = 42. Горизонтальные проекции точек 1, 2, 3 и 4 построены аналогично точкам 5 и 6.
Радиус максимальной сферы равен расстоянию от точки пересечения осей поверхностей до самой удаленной точки пересечения контурных образующих этих поверхностей. На рис 54 – сфера Rmax =[O2L2].
Для установления видимости проекций линии пересечения анализируем расположение точек относительно контуров поверхностей. Так, относительно П1, видимым будет участок кривой, расположенный выше контура горизонтальной конической поверхности (вторая поверхность на видимость на П1 не влияет). Горизонтальная проекция невидимой части линии показана штриховой линией.
Точки А, В и K, L принадлежат фронтальным контурам поверхностей и отделяют видимую часть линии пересечения от невидимой при проецировании на П2. Фронтальные проекции видимой и невидимой частей линии пересечения на рис. 54 совпадают.
Источник
Способ концентрических сфер
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА. ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ.
СПОСОБ ВСПОМОГАТЕЛЬНЫХ ЭКСЦЕНТРИЧЕСКИХ СФЕР.
Способ концентрических сфер.
Рассмотрим построение линии пересечения двух поверхностей, когда в качестве поверхности-посредника используется сфера. При этом возможны два случая применения сфер:
1) вспомогательные сферы могут быть проведены из одного общего для всех сфер центра. В этом случае говорят о способе концентрических сфер,
2) вспомогательные сферы проводятся из разных центров. Этот способ называют способом эксцентрических сфер.
Предварительно скажем несколько слов о пересечении соосных поверхностей, т.е. поверхностей, имеющих общую ось вращения.
Пусть заданы две образующие линии (два главных меридиана) -прямая l и дуга окружности m (рисунок 12-1). При вращении их вокруг оси i будут описаны соответственно цилиндрическая и торовая поверхности. Каждая точка заданных линий при вращении вокруг оси i описывает в пространстве окружность, плоскость которой перпендикулярна оси вращения.
Полученные поверхности пересекаются, причем линий пересечения будет столько, сколько точек пересечения имеют сами образующие линии (меридианы). Поскольку в нашем случае они пересекаются в двух точках, будет и две линии пересечения поверхностей, которые представляют собой окружности (параллели).
В частном случае одной из соосных поверхностей может быть сфера, если центр дуги окружности m находится на оси вращения i.
Таким образом, если центр сферы находится на оси некоторой поверхности вращения, то эта поверхность пересекается со сферой по окружностям. Это свойство и положено в основу способа вспомогательных сфер.
Способ концентрических сфер следует применять в случаях, когда соблюдаются следующие три условия:
· пересекаются поверхности вращения или поверхности, содержащие семейства окружностей, по которым их могут пересекать концентрические сферы;
· оси поверхностей вращения пересекаются;
· поверхности имеют общую плоскость симметрии, параллельную одной из плоскостей проекций. Если же она не параллельна ни одной из плоскостей проекций, то необходимо произвести преобразование чертежа для достижения необходимых условий решения.
Пример 1. Построить линию пересечения конуса вращения с цилиндром вращения (рисунок 12-2).
Сначала определим некоторые опорные точки. Так как поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций, то пересечение их контурных образующих в точках А и В определяет высшую и низшую точки линии пересечения.
Центр сфер 0 выбирают в месте пересечения осей цилиндра и конуса, т.к. только в этом случае сферы будут соосны с обеими поверхностями.
Определим радиус минимальной Rmin и максимальной Rmax сфер, которые будем использовать при решении задачи. Rmax определяется расстоянием от точки 0 до самой удаленной опорной точки.
Для определения Rmin необходимо из центра 0 опустить перпендикуляры на очерковые образующие поверхностей из центра 0 опустить перпендикуляры на очерковые образующие поверхностей. Больший из них принимается в качестве Rmin, т.к. сфера такого радиуса будет касаться одной и пересекать вторую поверхность, что дает возможность найти общие для обеих поверхностей точки — точки линии пересечения. При радиусе сферы меньшем Rmin она не будет иметь общих точек с одной из поверхностей; построения теряют смысл.
Для построения случайных точек проводим сферы радиуса Rmin
· каждая поверхность содержит семейство окружностей, по которым её могут пересекать эксцентрические сферы, общие для обеих поверхностей.
Пример 2. Построить линию пересечения конуса вращения со сферой (рисунок12-3).
Плоскостью симметрии данных поверхностей является фронтальная плоскость, поэтому можно применить способ вспомогательных сфер. Каких?
Задачу можно решить как способом концентрических сфер, так и эксцентрических. Решим её вторым способом.
Центр сфер можно брать в любой точке оси конуса вращения. На рисунке 12-3 проведены три сферы радиусов RI, R2, R3. Каждая из этих сфер пересекается с каждой из данных поверхностей по окружности, точки пересечения которых будут точками линии пересечения.
На виде сверху точки находим с помощью параллелей конуса h¹,h²,h³.
Пример 2. Построить линию пересечения конуса вращения с тором (рисунок 12-4).
Эту задачу можно решить только способом эксцентрических сфер.
Обе поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций, в которой расположены ось конуса и линия центров тора.
Как и во всех задачах на пересечение поверхностей, вначале определяем опорные точки. Самая верхняя и правая — т. А, расположенная на пересечении контурных линий. Чтобы найти нижнюю и левую т. В (точку касания контурных линий конуса и тора), необходимо из т. О опустить перпендикуляр на контурную образующую конуса; их пересечение определяет т.В.
Для построения дополнительных точек выделим одну окружность –m принадлежащую поверхности тора.
Центры всех сфер, которые будут пересекаться с тором по этой окружности, будут лежать на прямой n1 данной окружности C1 перпендикулярно к её плоскости. Эта прямая пересечёт ось конуса (т.к. они лежат в одной плоскости) в т. 01. Эта точка будет центром сферы, которая пересечёт поверхность конуса по окружности h1. Окружности m1 и h1 пересекаются в точках 1 и 2, которые будут принадлежать линии пересечения.
Для нахождения дополнительных точек нужно взять новую окружность на поверхности тора и все действия повторить.
На виде сверху точки линии пересечения находят при помощи параллелей конуса h.
Источник
Метод концентрических сфер
В этом случае в качестве вспомогательных секущих поверхностей выбираются концентрические сферы.
Применение этого метода основано на следующем свойстве: Две поверхности вращения, имеющие общую ось (соосные поверхности), пересекаются по окружностям. Действительно, кривая m образует поверхность вращения с осью вращения i, кривая n образует вторую поверхность вращения с той же осью i. Если mÇn = А, то точка А опишет окружность, которая является общей для обеих поверхностей, следовательно, является линией их пересечения. (Рис.9.4.)
Если ось i перпендикулярна плоскости Н, то окружность, описываемая точкой А, проецируется на фронтальную плоскость проекций в отрезок, а на горизонтальную плоскость в окружность.
Из сказанного можно сделать следующие выводы:
1. Для того, чтобы вспомогательная секущая сфера пересекала по окружностям две заданные поверхности вращения, центр сферы должен лежать в точке пересечения осей этих поверхностей.
2. Если оси заданных поверхностей вращения параллельны плоскости проекций, то окружности пересечения вспомогательной секущей сферы с этими поверхностями проецируется на эту плоскость в отрезки.
Теперь можно сформулировать условия, необходимые для применения метода концентрических секущих сфер:
1. Данные поверхности должны быть поверхностями вращения;
2. Оси вращении данных поверхностей должны пересекаться;
3. Плоскость, проходящая через оси вращения данных поверхностей, должна быть параллельна какой — нибудь плоскости проекций.
Построение линии пересечения начинается с построения опорных точек (Рис.9.5.). Чтобы построить опорные точки надо построить сферу минимального радиуса. Сфера минимального радиуса вписана в одну поверхность и пересекает вторую.
Общие точки С и Д окружности касания с конусом и окружности пересечения с цилиндром являются опорными точками. К опорным точкам относятся также точки пересечения фронтальных очерков данных поверхностей. Отрезок O²F² где f² наиболее удаленная от точки О² точка пересечения очерков данных поверхностей определяет сферу максимального радиуса.
Для построения промежуточных точек необходимо выбрать сферу радиуса R, где Rmin
Источник