- Нивелирование, способы, методы и классы
- Методы построения и классы высотных нивелирных сетей
- Методы нивелирования
- Готовые работы на аналогичную тему
- Геометрическое нивелирование
- Тригонометрическое нивелирование
- Барометрическое нивелирование
- Нивелирование в геодезии
- Нивелировка и ее методы
- Инструментарий геометрической нивелировки
- Принципиальные основы геометрического нивелирования
- Тригонометрическая нивелировка
- Принцип гидростатического нивелирования
- Принцип работы лазерных уровней
Нивелирование, способы, методы и классы
Нивелирование — это измерения по определению превышений между точками на земной поверхности и вычисление их высот относительно начальной высотной точки отсчета с применением различных геометрических, физических методов и приборов.
Самые первые упоминания об уровневых построениях были известны еще в Древнем Риме и Греции. Связаны они с водяным уровнем, то есть с первым гидростатическим способом нивелирования. Все последующие методы получали с развитием технического прогресса, конкретными изобретениями и их практическим применением. Изобретения зрительной трубы и сетки нитей (Пикар) в XVI и XVII веке, барометра в XVII (Торричелли), цилиндрического уровня в XVIII (Рамсден) позволили развивать способы барометрического, геометрического и тригонометрического нивелирования. Построение стереокомпаратора и стереофотоаппарата создало предпосылки для стереофотограмметрического нивелирования. На основе физических принципов лазерных излучений и новых цифровых технологий появляются современные лазерные и цифровые нивелиры.
Ставить в уровень вот что означает с французского нивелир. Именно благодаря прибору с таким наименованием получили распространение геодезические способы точного нивелирования. Наиболее точным, популярным и востребованным в современном приборостроении, строительстве, геологической разведке и других отраслях считается способ геометрического нивелирования.
Методы построения и классы высотных нивелирных сетей
Можно рассматривать в ракурсе распространения единой и однозначной высотной системы координат по всей территории страны. Она имеет название Балтийская. Известно, что за ее начальную точку отсчета принят уровень Кронштадтского футштока. Все построения происходят «от общего к частному» и соединения нивелирных ходов между собой представляют высотные сети. По точности результатов измерений они подразделяются на пять типов нивелирования:
- I-го класса;
- II-го класса;
- III-го класса;
- IV-го класса;
- технического нивелирования.
Сети I и II класса создаются как основа всей высотной системы страны. С их помощью решаются крупные научные задачи по отслеживанию вертикальных перемещений физической поверхности Земли, исследований земной поверхности, измерения уровней всех морей окружающих нашу страну.
Сети III, IV класса развиваются от пунктов более высоких классов и выступают высотной основой для топосъемок, изыскательских и прикладных геодезических работ. Ориентировочная схема по развитию нивелирных сетей показана на рис.1.
Рис.1. Схема высотных сетей.
Сети I класса формируются из нивелирных ходов, полигонов с общей протяженностью порядка 1200 км в освоенных районах страны и 2000 км в малоосвоенных. При построении полигонов II класса их периметры составляют 400 и 1000 км соответственно. Они выстраиваются внутри полигонов I класса системой линий и ходов. Периодически в сетях I и II класса производятся повторные измерения через 25 и 35 лет соответственно. Это дает возможность поддерживать их на соответствующем современном уровне.
Построение сетей III, IV класса опирается на пункты государственного высотного обоснования высших классов и осуществляется внутри этих полигонов. При создании высотной съемочной основы для топосъемок возможно прокладывание сетей с применением технического нивелирования.
Каждый класс нивелирования исполняется с наилучшей точностью с соблюдением соответствующих требований по допустимым значениям среднеквадратических погрешностей нивелировок и предельных погрешностей в полигонах и отдельных линиях ходов. Параметры и формулы допустимых значений отображены таблице ниже, где L – длина линии хода, полигона в км.
Источник
Методы нивелирования
Вы будете перенаправлены на Автор24
Нивелирование в геодезии представляет собой комплекс работ геодезической направленности, которые связаны с измерением превышений, а также высот точек местности. Подобные работы выполняются при необходимости решений разных инженерно-геодезических задач в строительстве, в условиях высотной съемки местности, выполнения научно-технических задач, когда изучаются динамические процессы движения земной коры, разности уровня воды в океанах, при исследовании деформаций инженерных сооружений.
Подразделяют нивелирные сети на ведомственные и государственные. Государственная сеть означает систему располагающихся на всей территории страны закрепленных на местности геодезических пунктов (называемых реперами). Высоты таких реперов установлены в единой системе от исходного пункта, считающегося началом отсчета высот.
Государственную нивелирную сеть строят, согласно принципу от общего к частному. При этом она разделена на четыре класса. Сети первого и второго классов считаются максимально точными, они предназначены с целью распространения на территорию страны единой системы высот.
Таким образом, к высокоточному нивелированию относятся первый и второй классы, а к точному – третий и четвертый (сети сгущения).
В геодезии выделяют такие методы нивелирования:
- геометрическое, наиболее точное (отмечено ситуацией, когда превышение между точками получается в форме разности отсчетов по рейке при условии горизонтального положения визирной оси);
- тригонометрическое (при таком методе превышение между точками будет определяться по расстояниям между точками и измеренным вертикальным углам, имеется в виду нивелирование посредством наклонного визирного луча).
- барометрическое (основывается на зависимости высоты точек на местности и атмосферного давления);
- гидростатическое (основано на таком свойстве жидкости в сообщающихся сосудах, как пребывание на одном уровне).
Готовые работы на аналогичную тему
Геометрическое нивелирование
Геометрическое нивелирование выполняется с задействованием нивелира и нивелирных реек. Нивелир является прибором, в котором в горизонтальное положение приводится визирный луч. Отсчеты берутся по шкалам вертикально устанавливаемых реек нивелира. Возрастание оцифровки шкал на рейках осуществляется вверх от пятки рейки. Если нулевая отметка шкалы находится на пятке рейки, отсчет по рейке равнозначен расстоянию между пяткой и лучом визирования.
Рисунок 1. Схемы основных способов геометрического нивелирования. Автор24 — интернет-биржа студенческих работ
Геометрическое нивелирование выполняется следующими двумя способами:
- Нивелирование из середины (считается главным способом). С целью измерения превышения одной точки над другой нивелир устанавливается в средней части между ними, при этом в горизонтальное положение приводится его визирная ось. На этих точках устанавливаются рейки нивелира. Отсчет первой точки берется по задней рейке, а второй – по передней.
- Нивелирование вперед предусматривает установку нивелира над первой точкой и последующее измерение (стандартно — посредством рейки) высоты прибора. Во второй точке, чью высоту потребуется установить, устанавливаются рейка. После приведения визирной оси нивелира в горизонтальное положение, берется отсчет второй точки по черной стороне рейки.
Тригонометрическое нивелирование
Тригонометрическое нивелирование между двумя пунктами предполагает включение измерения расстояния и угла наклона между ними с дальнейшим вычислением показателя превышения по тригонометрическим формулам. Над первым пунктом ставится теодолит, на второй ставится рейка или веха.
На рейке (вехе) отмечается точка визирования и измеряется ее высота. Над первым пунктом измеряется показатель высоты прибора. Посредством теодолита измеряется угол наклона линии. Наклонное расстояние определяется с задействованием оптического дальномера или светодальномера.
Теодолит представляет собой специальный прибор измерительного действия, предназначенный для вычисления вертикальных и горизонтальных углов в момент проведения топографических съемок, а также при осуществлении маркшейдерских и геодезических работ, в рамках строительства и пр.
Рисунок 2. Схема тахеометрического хода. Автор24 — интернет-биржа студенческих работ
Основной рабочей мерой в теодолите выступают лимбы с присутствием градусных и минутных делений (горизонтального и вертикального типа). Теодолит может применяться для определения расстояний с нитяным дальномером.
Альтернативным вариантом конструкции теодолита является гиротеодолит, кинотеодолит и тахеометр. В конструктивном плане теодолит состоит из таких базовых узлов:
- корпуса с наличием горизонтальных и вертикальных отсчетных кругов и иных технологических узлов;
- подставки (иногда называемая триггером) с присутствием трех подъемных винтов и круглого уровня (с целью горизонтирования теодолита);
- зрительной трубы;
- наводящих и закрепительных винтов для того, чтобы зафиксировать зрительную трубу на объекте наблюдения;
- цилиндрического уровня;
- оптического центрира (отвеса) в целях максимально точного центрирования над точкой;
- отсчетного микроскопа для снятия отсчетов.
Поверки теодолита представляют действия, направленные на выявление выполнения геометрических условий, предъявляемых к инструменту. С целью выполнения нарушенных условий производятся действия по исправлению (юстировка инструмента).
Барометрическое нивелирование
С целью вычисления высот точек местности в ходе выполнения работ по геодезическому исследованию, с целью съемки рельефа горной и высокогорной территории, может применяться метод барометрического нивелирования. Задачей такого метода является вычисление разности высот двух точек на базе результатов параллельного измерения атмосферного давления в данных точках.
Что касается атмосферного давления в каждой точке местности, то оно будет зависимым от высоты над уровнем моря и тех метеорологических условий, которые наблюдались в момент измерений. При измерении атмосферного давления применяются барометры пружинного и частично жидкостного (ртутного) типа. Пружинные называются также анероидами.
В связи с существенным воздействием на давление температуры воздуха, ее измерение выполняется параллельно с давлением на станции посредством термометра-праща (толстостенного капилляра, в один конец которого помещают ртуть, а что касается другого, то он заканчивается металлическим наконечником (возможно стеклянным шаром), к которому прикрепляется шнур).
Источник
Нивелирование в геодезии
Современное строительство похоже на масштабное производство какого – ни будь завода автогиганта, где существует масса отдельных производственных конвейеров, готовящих узлы будущего автомобиля. Кто-то собирает двигатель, а другие специалисты, к примеру, управляют процессом автоматической сварки кузова. Но и там и здесь четкое взаимодействие групп специалистов направлено на достижение конечного результата – производство технически сложного изделия, к примеру, машины, здания или сооружения.
От их слаженной подконтрольной работы зависит не только качественный результат, но и в первую очередь безопасность людей, которым впоследствии предстоит эксплуатация объекта. Применительно конкретно к строительству это означает точность заранее выверенных точек, горизонтали и вертикальных плоскостей. Да, профессия геодезиста высококвалифицированный труд, поскольку подразумевает владение точными, дорогими и технически сложными приборами, такими как электронный теодолит и т.д.
Но все же, для большинства строителей, хорошей практикой контроля качества работ, послужит регулярное применение более простого в обращении устройства, получившего название нивелир. К примеру, разметить высоты на строительном участке, согласно плану, будет основной частью геодезических работ. Изучив рельеф местности, строители получат необходимую информацию для оптимального выбора места под котлован и расчета точек сброса (вывода) сточных вод.
Таким образом, основной задачей нивелирования можно назвать определение разницы точек будущего здания по отношению к земле по высоте. Получив данные о отметке цоколя здания, легко рассчитать точку вывода сточной воды или же привязать по месту врезку стока канализации.
Для осуществления контроля над ходом строительных работ, у мастера прораба, могут быть разные приборы локального значения, но они не дадут общей информации по всему объекту. Так, к примеру, для определения влажности строительных материалов существуют так называемые гигрометры. Но с его помощью невозможно определить степень критического увеличения всего здания.
С помощью нивелира реально точно снять значения высот по периметру здания и затем сравнить их с контрольными точками. На фасады здания по всему периметру устанавливаются специальные маркеры, затем высчитывают превышение между ними. Таким образом, допустимым показателем можно считать нахождение всех маркеров в одной плоскости с учетом допустимых отклонений. Если это так, значит, здание можно эксплуатировать дальше, в противном случае обнаруживается просадка и возможно потребуется эвакуация.
Нивелировка и ее методы
В целом все виды превышений можно сгруппировать на основные (преимущественные) и дополнительные. Основные подразумевают:
- Использование горизонтального визира луча зрительной трубы нивелира (геометрическое нивелирование)
- Принцип наклона визира луча зрительной трубки теодолита (тригонометрическое нивелирование)
- Выравнивание жидкости в сообщающихся емкостях водяного уровня (гидростатическое нивелирование)
В качестве дополнительных методов нивелирования используют:
- Барометрическое нивелирование, которое применяют в горах и основано на разнице показателей атмосферного давления по отметкам высоты
- Автоматическое нивелирование, применяемое при производстве строительно-дорожных работ, принцип действия которых основан на считывание показаний с датчиков, установленных на автомобиле. Они в свою очередь высчитывают наклонный вектор при перемещении
- Стереофотограмметрическое нивелирование выполняется на сложной аппаратуре в комплексе. Основано на паре снимков с космоса или самолета, которые потом частично перекрывают и загружают в цифровое устройство. Это самый догорай и современный метод, в результате которого выводится эффект трехмерного изображения
В качестве примера можно привести аэрофотосъемку современного микрорайона. Осуществив привязку четких контуров снятой местности к системе координат, можно получить трехмерную модель, с определением точек высот с использованием метода интерполяции.
Инструментарий геометрической нивелировки
Как было указано данный тип работ проводиться с помощью нивелира. Он представляет классический прибор с оптико-механической начинкой, обеспечивающий горизонт для визирного луча. Прибор монтируется на штативе и выставляется в точку стояния, затем при помощи специальных винтов выводиться в горизонтальную плоскость. Трубка нивелира бывает двух видов, прямого и обратного изображения. Трубкой прямого изображения оснащаются в основном нивелиры современного типа.
Приборы старого образца, хоть и имеют систему обратного изображения, но имеют отличную видимость. К тому же при работе с трубками обратного изображения применяется измерительная линейка в перевернутом виде и система поворотных линз. Стоимость таких приборов высока, да к тому же система линз для поворота изображения страдает одним недостатком. В условии рефракции наблюдаются незначительные искажения объектов, при использовании в жаркий период года.
И все же качество советских приборов цениться, по причине высокой четкости по сравнению с современными аналогами. В качестве примера возьмем советский теодолит и сравним его с электронным геодезическим тахеометром имеющий оптическую систему Carl Zeiss . Результат будет не в пользу последнего, так как советский хорошо подходит для локальной выверки с адекватным изображением. Если нужна глобальная картинка, необходимо использовать метод спутниковой геодезии.
Существует три типа конструкций нивелиров: цилиндрического уровня зрительной трубы, с компенсатором автоматом и электронные. Нивелиры так же принято делить по классу точности: технические (H -10), точные (Н-3, Н-3К, Н-3КЛ) и приборы высокой точности (Н-05, Н-1, Н-2).
Как можно наблюдать все нивелиры имеют маркировку буквами, основная из которых Н. Она собственно означает слово нивелир. Цифры означают погрешность (среднеквадратическую) в миллиметрах, на километр расстояния. Буквы Л и К означают лимб, а так же компенсатор, указывающие на конструктивную особенность нивелиров.
Компенсаторы предназначены для устранения погрешности при установке нивелиров, и бывают ручного и автоматического типа. То есть, вывод в горизонтальную плоскость при ручном компенсаторе выполняется непосредственно человеком, а при автоматическом соответственно самовыравниванием.
Принципиальные основы геометрического нивелирования
При работе с нивелиром существует ряд методов позволяющих эффективно добиваться точного результата:
- Методом нивелирования из середины
- Методом нивелирования вперед
В основе каждого из них лежит свой принцип работы. Так первый способ подразумевает отсчет показаний по геодезическим рейкам, которые устанавливаются в точках стояния, сзади и спереди нивелира. Затем снимаются данные разницы превышения и записываются в журнал. Способ расположения нивелира по отношению к рейкам получил название «метод нивелирования из середины», который является основным методом при строительстве.
Данный метод основан на принципе отсчета, по аналогии с теодолитным ходом, ведущимся с заранее известных высот, называемых реперами. Принцип хорошо иллюстрирует картинка, где есть точки А и Б. Естественно разница между точками по рекам составляет превышение, которое может быть как отрицательным, так и положительным. Данные одного превышения на местности, на практике нельзя считать окончательным, поскольку для объективной картины ее рельефа, необходимо снять как можно больше таких превышений.
Система сравнивания высот, применяемая в топографических планах, носит название «Балтийская». Она имеет начальную точку нуля Кронштадтского футштока, который в свою очередь находится на балтийском побережье. В данном случае на картинке, абсолютная высота (точка Б) рассчитывается, как h = А + а – б. Точка А – это отметка государственной системы высот, а считывание с реек ведется по отрезкам а, б.
Нивелирование методом «вперед» основано на использовании прибора и одной рейки, устанавливаемой перед ним. Сам нивелир устанавливается на заранее известную точку, а формула, по которой рассчитывается превышение, имеет вид:
h = А + i – б, где i — высота нивелира, измеряемая рулеткой. Такой способ применяется реже, так как имеет сложности в установки прибора на вертикальной поверхности стен. К тому же работа дистанционным способом намного легче и позволяет не приближаться к объектам.
Здесь за начальную точку отсчета, условно принято брать урез воды водоемов сообщающихся с любым мировым океаном. Но в таком случае мы будем иметь дело с условной системой высот, точности которой будет не хватать для проведения масштабных строительных работ. И все-таки, данный принцип геометрического нивелирования, отлично подойдет для локальных строительных площадок, где не требуется увязка высот здания с региональными системами.
Тригонометрическая нивелировка
Она построена на принципе использования одного из двух измерительных приборов, тахеометра или теодолита. Для считывания превышения используют угол от горизонта до верхнего края измерительной рейки, а в случае большой удаленности объекта его вершины. К примеру, этим способом измеряют высоты опор линий электропередач. Он хоть и дает незначительную погрешность расчета, но зато позволяет производить расчеты превышений на больших расстояниях и углах рельефа местности.
Формула высоты тригонометрического измерения выглядит так: h = s * tg ν + i – б или h = S * sin ν + i – б. Значения величин подставляются в нее с учетом того, что:
- ν — это угол луча по отношению к горизонту
- s — горизонт линии
- S — длина отрезка визирной линии
- i — высота измерительного прибора
- б — высота визировки
Принцип гидростатического нивелирования
Гироскопы (гидроуровня) хороши для использования в любых условиях, доступны по цене, а главное позволяют определять превышения в ускоренном автоматизированном режиме. Обычно их принято использовать:
- при монтаже оборудования крупных габаритов
- в отделочных и в архитектурных работах
- для выверки горизонта фундамента
- при укладке труб и монтаже сантехнических узлов
- для выставления горизонтальных направляющих
- для передач отметок высоты через преграды (перегородки, барьеры, водоемы)
- для отслеживания просадок зданий и деформации сооружений
Работа гидроуровня демонстрируется рисунком ниже, и как было указано ранее, основана на выравнивании уровня воды (любой другой жидкости, к примеру, антифриз) в сообщающихся емкостях (сосудах). Здесь для нахождения превышения h, используют разницу в отметках, со специальных шкал, нанесенных на сосуды (отметки а, б). Принцип, положенный в основу этого измерения допускает считывание превышения в условиях малых пространств. Пользование приборами такого типа, не потребуют специальных знаний, но не даст точного результата. При измерении гидроуровнем погрешность может составлять до 1 см, как в минус, так и в плюс. Еще одним недостатком применения, можно считать неудобное перемещение прибора, а точнее его соединительного шланга.
Принцип работы лазерных уровней
Современные электронные нивелиры построены на визуализации отметок проецируемых самим прибором с помощью лазера. При этом разметка может производиться лучом сразу в нескольких плоскостях предметов и помещений. В качестве примера рассмотрим работу ротационного уровня, скорость вращения луча которого, достигает 400 -550 об/мин.
Преимущество использования такого нивелира в том, что им можно производить разметку, высчитывать превышение в условиях закрытых узких пространств помещений и на открытой местности, с минимальной погрешностью и под любым углом. Работать можно, как при дневном освещении, так и в темное время суток. Его удобно использовать при поклейки плитки на стену, оклейки обоев и выставления иных конструкций. С его помощью выполняют:
- нивелировку
- превышение точек
- размечать угол наклона конструкций
Лазерные уровни особенно незаменимы, там, где необходимо производить разметку на больших и удаленных плоскостях, так как они более удобны в отличие от веревочных отвесов, угольников и реечных уровней. Они безопасны в применении и относятся к 2 классу излучения. Сам луч прибора так же не представляет угрозы для человека, за исключением длительного воздействия на глаза. Все лазерные уровни ударопрочны и влагонепроницаемы, поскольку такие факторы влияют на работу и защита от них изначально заложена в разработку приборов. Для большего удобства, при интенсивном солнечном свете, рекомендовано использовать специализированные очки.
Все приборы необходимо подвергать проверке на точность периодично (раз в год). Желательно приобретать приборы известных марок и производителей. Использование непроверенного инструмента, может стоить вам больших ошибок, особенно при строительстве многоэтажных или многоярусных конструкций. Ошибки в сантиметрах на начальных этапах строительства, могут привести к невозможности его завершения, по причине не соответствия размеров верхних помещений или консолей, типовым завершающим конструкциям (фермам, плитам перекрытий и т.д.). Помните о том, что от кропотливой работы геодезистов, зависит весь ход строительного процесса, где задействовано множество ресурсов, как людских, так и машин (механизмов). А переделывать всю работу порой невозможно и дорого.
Источник