Для измерения деформации сооружения применяют способы

Геодезические приборы для измерения деформаций сооружений


Изучение деформаций сооружений

Изучение деформаций сооружений , вызываемых осадками и горизонтальными смещениями, обычно осуществляют геодезическими методами. Степень деформации характеризуется величиной и скоростью процесса. Иногда характер деформаций влияет на нормальный режим функционирования сооружения. В этом случае при проектировании, строительстве и эксплуатации сооружений, особо чувствительных к деформациям, необходим учет деформаций, которые по своей величине могут быть несущественны для устойчивости строительных конструкций, но важны для технологического процесса. Примером этого могут служить ускорители заряженных частиц, для которых важны не отдельные величины деформаций несущих конструкций, а их функциональное возмущающее влияние на работу ускорителя. Поэтому резко возрастают требования к стабильности грунтов, лежащих в основании фундаментов подобных сооружений.

Особое внимание уделяется изучению деформаций сооружений высотного типа, которые по конструктивным признакам подразделяются на высотные сооружения ступенчатого, коробчатого и башенного типа — высотные здания, высотные жилые дома, телевизионные башни, дымовые трубы, градирни ТЭЦ, радиорелейные мачты и т. д. Для всех этих высотных сооружений характерно сосредоточение огромной нагрузки на основание и фундаменты, составляющей иногда несколько десятков тысяч тонн и вызывающей осадку сооружения. Неравномерность осадки приводит к нарушению вертикальности (крену), прогибам отдельных элементов сооружения и трещинам. Эти деформации, присущие всем типам высотных сооружений, возрастают с ростом нагрузки в строительный период и постепенно, по мере уплотнения грунтов, стабилизируются в период эксплуатации.

Кроме того, сооружения башенного и ступенчатого типа испытывают так называемые динамические деформации (изгибы и колебательные движения), обусловленные воздействием температурных факторов и переменной ветровой нагрузки.

Для этих крупных инженерных сооружений наблюдения за деформациями являются обязательными в течение всего эксплуатационного периода. К таким сооружениям также относятся плотины, здания ГЭС, водоотводящие комплексы, шлюзы, причалы для судов, судоподъемники и др. Наиболее крупными из них являются плотины гидроэлектростанций, которые подвержены деформациям под действием собственной массы сооружения, давления воды и льда, удара волн, температурных влияний и других факторов. На основании расчетов не может быть точно оценено их влияние на устойчивость сооружения, и поэтому должны выполняться периодические натурные измерения осадок и горизонтальных смещений, которые определяются относительно опорных пунктов, расположенных вне зоны возможных деформаций.

Осадки сооружений (смещения в вертикальной плоскости), как правило, определяют с помощью повторного высокоточного нивелирования . Для наблюдений за сдвигами (горизонтальными смещениями) обычно применяют створный метод, а динамические деформации и крен верхней части сооружений башенного типа могут быть определены различными способами, наиболее распространенными из которых являются способ координат, способ угловых трехстворных наблюдений и вертикального проектирования. С развитием науки и техники все большее распространение находят методы и средства автоматизации наблюдений за деформациями сооружений.

Створные измерения

Под створными понимают геодезические измерения , выполняемые с целью определения незначительных отклонений промежуточных точек от прямой, проходящей через два крайних (исходных) пункта, называемых опорными. Створные измерения применяют при изучении деформаций сооружений , а также для установки технологического оборудования в проектное положение. При этом относительно опорных точек в натуре разбивают и закрепляют монтажные оси, которые могут совпадать с рабочими осями устанавливаемого технологического оборудования или быть параллельными им.

Приборы для измерения осадок и сдвигов сооружений

Деформация сооружения по высоте чаще всего проявляется в виде неравномерной осадки разных его частей. Для измерения осадок сооружений используются следующие методы: 1) геометрическое нивелирование, 2) гидростатическое нивелирование, 3) тригонометрическое нивелирование, 4) микронивелирование. Наиболее распространенным методом изучения осадок является геометрическое нивелирование, так как оно обеспечивает высокую точность и достаточную оперативность измерений.

Определение крена сооружений и динамических деформаций

Для определения крена сооружений в основном применяются приборы вертикального проектирования как оптические, так и лазерные. Оптические приборы не обеспечивают дистанционный съем информации, поэтому при долговременных наблюдениях за осадками сооружений целесообразно использовать лазерные приборы вертикального проектирования.

Источник

Геодезические методы анализа плановых и высотных деформаций земной поверхности и инженерных сооружений

Анализ деформаций является важной задачей для каждого региона нашей страны, в особенности для тех территорий, на которых наблюдается изменение земной поверхности.

В настоящее время отрасль изучения деформаций достаточно развита в России и есть много необходимого материала для выявления таких изменений. Для того, чтобы обнаружить какие-нибудь изменения земной поверхности в нашей стране организованы специальные службы, которые занимаются контролем всех реперов и делают анализ высокоточных результатов измерений за несколько циклов. На основании данных, полученных в результате анализа, специалисты этих служб делают заключение о деформациях инженерных сооружений или земной поверхности.

Для выявления высотных и плановых деформаций, геодезические измерения проходят определенную обработку при помощи специальных программ. После чего можно сделать соответствующие выводы о величине высотных и плановых деформаций.

Читайте также:  Кольцо амигуруми простой способ

Основными методами для измерения деформаций и осадок инженерных сооружений являются геодезические. Эти методы позволяют определить как относительные перемещения точек, так и их абсолютную величину по отношению к неподвижным знакам геодезической основы.

Существует несколько геодезических методов определения деформаций и осадок инженерных сооружений:

  • тригонометрическое нивелирование;
  • гидростатическое нивелирование;
  • створные методы;
  • триангуляция;
  • геометрическое нивелирование I и II классов;
  • метод с использованием различной спутниковой аппаратуры.

О каждом из этих методов можно коротко рассказать следующее:

Метод тригонометрического нивелирования применим для определения вертикальных смещений открытых, труднодоступных и отдаленных точек сооружения.

Определение превышений методом гидростатического нивелирования позволяет получить результаты высокой точности — около 0,01мм, а также производить наблюдения между точками с имеющимися между ними препятствиями. Но этот метод может быть использован только в неподвижных помещениях с хорошими метеорологическими условиями, что является основным ограничением использования данного метода.

Створные методы наблюдения — это комплекс действий направленный на определение положения одной или нескольких точек относительно прямой линии, задающей створ.

Метод триангуляции — является наиболее удобным для определения линейных смещений.

Метод геометрического нивелирования — это наиболее распространенный метод из геодезических методов измерения осадок. Главными его преимуществами являются простота производства работ и очень высокая точность. Это позволяет проводить измерения для любого количества стенных марок и грунтовых реперов при различных погодных условиях. Условия, при которых производятся наблюдения за деформациями сооружений, сильно отличаются от полевых условий выполнения государственного нивелирования. Особенность измерений состоит в том, что применяют нивелирование короткими плечами, потому что точки, расположенные на сооружении находятся на небольшом расстоянии друг от друга (5 -25 метров). Кроме этого, при нивелировании общая длина хода почти никогда не бывает больше 1 км. Вследствие чего средняя квадратическая ошибка превышения на I км хода теряет смысл. При государственном нивелировании она принимается как средняя квадратическая ошибка единицы веса. Поэтому для верного установления весов измеренных элементов, принимают более удобную величину, а именно среднюю квадратическую ошибку превышения, которое получено на станции как среднее арифметическое из превышений, вычисленных по шкалам реек (основной и дополнительной), при постоянном горизонте инструмента, в ходе одного направления с неизменной длиной луча визирования. Общая схема определения деформаций и осадок сооружений с помощью метода геометрического нивелирования состоит из нескольких этапов:

  • Создание геодезической сети, которая состоит из исходных реперов высотной основы и точек, закрепленных на сооружении;
  • С помощью метода высокоточного геометрического нивелирования проведение повторяющихся измерений превышений между точками сети;
  • Оценивание параметров деформаций и осадок сооружений по результатам измерений;
  • Анализ результатов обработки и их истолкование.

Геодезический метод с использованием различной спутниковой аппаратуры на сегодняшний момент может быть использован для определения деформаций не только на участках, имеющих определенные размеры, но и на больших территориях. Главная особенность спутниковых определений — это синхронность выполнения измерений и их оперативность. Этот факт позволяет одновременно определить деформации на всем участке с той точностью, которую может дать используемая спутниковая аппаратура и методика обработки таких измерений.

Определение деформаций инженерных сооружений — достаточно важная задача, и определение величин деформаций играет основную роль при строительстве и эксплуатации всевозможных сооружений. Этой задачей занимаются регулярно, и методики определения величин деформаций с каждым годом совершенствуются.

Источник

Методы измерения деформации зданий и сооружений

Возведение многоэтажных, крупных сооружений зачастую сопряжено с возникновением многочисленных подвижек. Чтобы здание безопасно эксплуатировалось в течение длительного времени, нужно применять современные методы определения деформации зданий и сооружений.

К числу основных способов относят:

• Измерение горизонтальных углов;
• Нивелирование;
• Сооружение вспомогательного маркера.

Методы определения деформации зданий и сооружений подразумевают применение специальных приборов:

• Теодолита;
• Кренометра;
• Точечного уровня;
• Измерительного винта;
• Клинометра.

Методы определения деформации зданий и сооружений позволяют выявить:

• Осадку. Это медленно текущая деформация, являющаяся результатом уплотнения грунта.
• Прогибы. Возникают в результате сооружения недостаточно устойчивого, жесткого каркаса;
• Наклон. Смещение фундамента по отношению к горизонтальной плоскости, в результате ошибки в расчетах нагрузки;
• Перекос. Резкое проявление неравномерности грунтовых подвижек по вертикали.

В нашей компании работают опытные специалисты, точно и в срок производящие все виды геодезических изысканий и исследований. Мы используем современные методы измерения деформаций зданий и сооружений. Результатом нашей работы является подробный отчет с указанием всей информации.

Качество, ответственный подход, проверенные методы измерения деформаций зданий и сооружений — вот наши главные преимущества!

Источник

Для измерения деформации сооружения применяют способы

Методы измерения деформаций оснований зданий и сооружений

Soils. Methods of measuring the strains of structure and building bases

Дата введения 2013-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Читайте также:  Способы написания географических координат

Сведения о стандарте

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений имени Н.М.Герсеванова (НИИОСП им.Н.М.Герсеванова) ОАО «НИЦ «Строительство»

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (приложение В к протоколу от 4 июня 2012 г. N 40)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 октября 2012 г. N 599-ст межгосударственный стандарт ГОСТ 24846-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2013 г.

6 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

1 Область применения

Настоящий стандарт распространяется на грунты всех видов и устанавливает методы определения деформаций (осадок, наклонов, сдвигов и т.п.) оснований фундаментов строящихся и эксплуатируемых зданий и сооружений.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий межгосударственный стандарт:

ГОСТ 22268 Геодезия. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 22268, а также следующие термины с соответствующими определениями:

3.1 деформация: Изменение положения грунтов или конструкций, определяемое по вертикальным и горизонтальным перемещениям в сравнении с первоначальным положением.

3.2 горизонтальное перемещение грунта или конструкций: Сдвиг грунта или конструкций в целом, происходящий под действием сил и других факторов.

3.3 крен фундамента и сооружения: Деформация, происходящая в результате неравномерной осадки, просадки, подъема, горизонтального воздействия и т.п.

3.4 точность измерений: Характеристика измерений, отражающая близость к истинному значению.

3.5 погрешность измерений: Отклонение результата измерения от истинного значения измеряемой величины.

3.6 репер: Геодезический знак, закрепляющий пункт нивелирной сети.

3.7 репер глубинный: Геодезический глубинный знак, опирающийся на скальные, полускальные или другие коренные практически несжимаемые грунты.

3.8 репер грунтовый: Геодезический знак, опирающийся на плотные грунты, или ниже глубины сезонного промерзания.

3.9 репер стенной: Геодезический знак, устанавливаемый на несущих конструкциях зданий и сооружений, осадка которых стабилизировалась.

3.10 деформационная марка: Геодезический знак, жестко укрепленный на конструкции здания или сооружения (фундаменте, колонне, стене), меняющий свое положение вследствие осадки, просадки, подъема, сдвига, крена и т.п. фундамента (сооружения).

3.11 опорный знак: Знак, практически неподвижный в горизонтальной плоскости, относительно которого определяются сдвиги и крены фундаментов зданий или сооружений.

3.12 центрировочное устройство: Устройство на опорном знаке для многократной фиксированной установки геодезических инструментов в одном и том же положении.

3.13 ориентирный знак: Знак, используемый для обеспечения исходного ориентирного направления при определении сдвигов и кренов фундаментов зданий и сооружений.

3.14 геометрическое нивелирование: Метод определения разности высот точек при помощи геодезического прибора с горизонтальной визирной осью и отвесно установленных в этих точках реек.

3.15 тригонометрическое нивелирование: Метод определения превышений при помощи геодезического прибора с наклонной визирной осью.

3.16 гидростатическое нивелирование: Метод определения разности высот наблюдаемых точек посредством разностей уровней жидкости в сообщающихся сосудах.

3.17 стационарная гидростатическая система: Прибор для определения осадок фундаментов, состоящий из большого числа водомерных стаканов-пьезометров, жестко укрепленных на фундаментах или конструкциях здания (сооружения).

3.18 способ совмещения при нивелировании: Способ отсчета по рейке, при котором вращением элевационного винта совмещают изображение концов пузырька уровня нивелира, а затем, изменяя наклон плоско-параллельной пластинки микрометром, совмещают биссектор со штрихом рейки.

3.19 способ наведения при нивелировании: Способ отсчета по рейке, когда нивелиром, приведенным в горизонтальное положение, сетка нитей визирной трубы наводится на ближайшие деления рейки.

Читайте также:  Метод авс это способ

3.20 метод створных наблюдений: Метод измерений отклонений деформационных марок во времени, установленных на здании (сооружении), от линии створа, концы которого закрепляются неподвижными опорными знаками.

3.21 метод отдельных направлений: Метод измерений отклонений деформационных марок по изменению горизонтального угла и расстоянию от опорных знаков до марок во времени.

3.22 замыкание горизонта: Вторичное наведение визирной оси теодолита (нивелира) на начальный ориентирный пункт и отсчета по горизонтальному кругу и в целях контроля неподвижности круга в течение полуприема угловых измерений.

3.23 триангуляция: Метод определения планового положения точек, являющихся вершинами построенных на местности смежно-расположенных треугольников, в которых измеряют их углы и некоторые из сторон, а координаты вершин и длины других сторон получают тригонометрически.

3.24 трилатерация: Метод определения планового положения точек, являющихся вершинами построенных на местности смежно-расположенных треугольников, в которых измеряют все стороны, а координаты вершин и горизонтальные углы между сторонами определяют тригонометрически.

3.25 полигонометрия: Метод определения планового положения точек здания (сооружения) по разностям координат, полученных путем проложения полигонометрического хода по опорным знакам и деформационным маркам, в котором измеряются все стороны, связывающие эти точки, и горизонтальные углы между ними.

3.26 способ малых (параллактических) углов: Способ смещения точек здания (сооружения), при котором расстояния определяются тригонометрическим путем по точно измеренному малому базису и лежащему против него острому (параллактическому) углу.

3.27 способ струны: Способ фиксирования направления какой-либо оси с помощью калиброванной стальной (капроновой, нейлоновой) струны, натягиваемой между закрепленными на местности точками, и стационарных или переносных отсчетных приспособлений с верньерами, индикаторами часового типа и т.п., закрепленными под струной в местах установки деформационных марок.

3.28 полуприем измерения: Однократное измерение угла при одном (любом) положении вертикального круга теодолита.

3.29 прием измерения: Двукратное измерение угла при двух положениях вертикального круга теодолита.

3.30 метод проецирования: Метод измерения наклонов здания (сооружения), при котором на двух взаимно перпендикулярных осях объекта закладываются опорные знаки, с которых теодолитом проецируют заметную верхнюю точку на какую-либо горизонтально установленную палетку (рейку), закрепленную внизу здания (сооружения). Зафиксированный в течение времени на палетке ряд точек представляет собой проекцию траектории верхней наблюдаемой точки на плоскость.

3.31 метод координирования: Метод измерения наклонов здания (сооружения), при котором вокруг объекта прокладывают замкнутый полигонометрический ход и вычисляют координаты трех или четырех постоянно закрепленных точек, с которых через определенные промежутки времени засечкой находят координаты хорошо заметной наверху здания, сооружения точки. По разности координат между циклами наблюдений находят значение наклона и его направление.

3.32 кренометр: Прибор, основной частью которого является точный уровень с измерительным винтом на одном из его концов, позволяющий определить крен в градусной и относительной мере.

3.33 обратный отвес: Натянутая струна, закрепленная в нижних горизонтах. С помощью уровней или поплавка в жидкости струна приводится в отвесное положение, что позволяет передавать в верхний горизонт координаты нижней точки.

3.34 маяк, щелемер: Приспособление для наблюдения за развитием трещин: гипсовая или алебастровая плитка, прикрепляемая к обоим краям трещины на стене; две стеклянные или плексигласовые пластинки, имеющие риски для измерения величины раскрытия трещины и др.

4 Общие положения

4.1 Определения деформаций грунта оснований фундаментов зданий и сооружений должны проводиться по программе, отвечающей требованиям, приведенным в приложении А, в целях:

— определения абсолютных и относительных значений деформаций и сравнения их с расчетными;

— выявления причин возникновения и степени опасности деформаций для нормальной эксплуатации зданий и сооружений;

— принятия своевременных мер по борьбе с возникающими деформациями или устранению их последствий;

— получения необходимых характеристик устойчивости оснований и фундаментов;

— уточнения расчетных данных физико-механических характеристик грунтов;

— уточнения методов расчета и установления предельных допустимых значений деформаций для различных грунтов оснований и типов зданий и сооружений.

Программа проведения измерений составляется организацией, проводящей измерения, на основе технического задания (см. приложение Б), выдаваемого проектно-изыскательской или научно-исследовательской организацией по согласованию с организациями, осуществляющими строительство или эксплуатацию.

4.2 С точки зрения геоинформационных систем определение деформаций оснований фундаментов строящихся зданий и сооружений является мониторингом деформаций и входит в состав геотехнического мониторинга. Мониторинг деформаций следует проводить в течение всего периода строительства и в период эксплуатации до достижения состояния стабилизации деформаций. Значение деформаций принимается по расчету, нормативным документам или устанавливается проектной или эксплуатирующей организацией с включением в техническое задание.

Для уникальных зданий и сооружений, а также при выполнении наблюдений, требующих непрерывного получения результатов измерений, рекомендуется использовать автоматизированные системы наблюдений. Оценка результатов измерений, полученных при помощи автоматизированной системы, должна проводиться специализированной организацией.

Мониторинг деформаций зданий и сооружений, находящихся в эксплуатации, следует проводить в случае появления недопустимых трещин, раскрытия швов, а также резкого изменения условий работы здания или сооружения.

4.3 В процессе мониторинга деформаций оснований фундаментов должны быть измерены (отдельно или совместно) следующие величины:

— вертикальные перемещения (осадки, сдвиги, просадки, подъемы, прогибы и т.п.);

Источник

Оцените статью
Разные способы