Детальная разбивка круговых кривых способы разбивки

Детальная разбивка круговых кривых

Детальная разбивка переходных и круговых кривых выполняется в период строительства после выноса на трассу трех основных точек кривой НК, СК, КК. Детальная разбивка производится через 5 м при радиусах кривых менее 100 м, через 10 м при радиусах кривых менее 500 м и через 20 м – более 500 м. Для детальной разбивки кривых наиболее часто используется способ прямоугольных координат (рис. 3).

Рис. 3 Способ прямоугольных координат

За начало координат принимают точку НК – начала круговой кривой, ось X располагают по тангенсу кривой в направлении ВУ, ось У направлена по радиусу к центру круговой кривой О.

Выбирают интервал разбивки К и для этого значения рассчитывают угол φ = (К/R)ρ, по которому определяют значения прямоугольных координат х и у для детальной разбивки.

Вдоль тангенсов (ось абсцисс) откладывают длины х, восстанавливают прямой угол в полученной точке. Точка 1 круговой кривой фиксируется расстоянием у, отмеренным по перпендикуляру. Так же и получают другие точки круговой кривой. Вторую половину круговой кривой разбивают от ее конца, выполняя аналогичные действия и используя значения х и у, по­лученные для первой половины. Как видно из геометрии способа, для его реализации требуется свободное пространство. Достоинство способа прямоугольных координат состоит в том, что каждая точка кривой выносится независимо от других с примерно одинаковой точностью.

Если участок трассы расположен в закрытой местности, то удобнее использовать способ продолженных хорд (рис. 4).

Рис. 4 Способ продолженных хорд

В этом способе первая точка выносится по способу прямоугольных координат. Затем хорда продолжается на ее же длину s, и получается вспомогательная точка 2′. На базе 12′ при помощи линейной засечки расстояниями s и d =s2/R получается точка 2 круговой кривой. Вновь продолжают хорду, но уже от точки 2. вдоль отрезка 21. Из точек 23′ повторяют линейную засечку отрезками s и d, получая точку 3 и т.д.

В некоторых случаях при трассировании объектов возникает необходимость выноса пикета на круговую кривую.

Вынос осуществляется методом прямоугольных координат (рис. 5)

Вначале вычисляется значение К – интервала круговой кривой между пикетом и началом круговой кривой.

Зная К можно получить угол φ

Читайте также:  Самый эффективный способ для потенции

Используя значение φ получим координаты x и y

Источник

ДЕТАЛЬНАЯ РАЗБИВКА КРУГОВЫХ КРИВЫХ

Детальная разбивка кривой предусматривает не только закреп-ление на местности начала НК, конца КК и середины СК кривой, но и обозначение всей кривой, например, колышками через определен-ный интервал. Существует ряд способов разбивки круговых кривых: способ прямоугольных координат, способ углов, способ продолжен-ных хорд.

Способ прямоугольных координат (ординат от тангенса).

Пусть необходимо обозначить на мест-ности точки 1, 2, 3 и т.д. через определен-ный интервал, равный длине дуги К. Если принять ус-ловную систему коор-динат Х-НК-У, то по-ложение каждой точ-ки определится пря-моугольными коор-динатами:

НК
O
R
R
У
Х

В эти формулы подставляют значение угла j1, зависящее от величины интервала К, которое можно найти из выражения:

j1= .

На местности откладывают от начала кривой НК по направ-лению на вершину угла поворота ВУ (по направлению тангенса) абсциссы Хi , а по перпендикулярному направлению ординаты Уi и закрепляют точки 1, 2, 3 и т.д. Так производят разбивку до середины кривой. Другую половину кривой разбивают с ее конца. Для определения координат Х и У существуют специальные таблицы.

Этот способ применяется на ровной площадке и является наиболее точным, так как точки 1, 2, 3 и т.д. выносят независимо друг от друга, поэтому ошибка положения одной точки не окажет влияния на положение других точек, чего нельзя сказать о рассмат-риваемых далее способах углов и продолженных хорд .

Способ углов (полярный способ).

Теодолит устанавливают в точке НК и приводят его в рабочее положение. Зритель-ную трубу ориентируют по направлению на ВУ так, чтобы отсчет на лимбе был равен 0°00’ и лимб закрепляют. Откладывают на лимбе угол j1/2 и закрепляют на рас-стоянии S точку 1 так, чтобы она попала в перекрестие сет-ки нитей. Далее откладывают угол 2j1/2 и на расстоянии S от точки 1 закрепляют точку 2 и т.д.
О
НК
R
R

Этот способ удобно применять в стесненных условиях, когда есть видимость между НК и точками 1, 2, 3. (например, на высокой насыпи, где способ прямоугольных координат неприемлем).

Угол j1 может быть найден по формуле (из решения заштрихованного треугольника), причем в этом способе S явля-ется хордой определенной длины.
НК

j1/2
R
О
R

Способ продолженных хорд

перемещение b и закрепля-ют точку 2 также на рас-стоянии S от точки 1. Далее в створе 1-2 на расстоянии S отмечают точку 3‘ и отрезками b и S засекают точку 3 и т.д. Ве-личина b = S 2 /R, что выте-кает из подобия треуголь-ников 1-2-О и 1-2-2 ’ . Часто для вынесения точки 1 принимают Х1 » S , а У1 » b/2.

Вначале по координатам Х1 и У1 выносят точку 1. Затем в створе НК-1 на расстоянии S от точки 1 отмечают вспомогательную точку 2’, от которой откладывают так называемое промежуточное

R
НК

R
О

Этим способом одну половину кривой разбивают с HK, а дру-гую половину — с конца кривой КК. Способ применим в любыхстес-ненных условиях, в том числе и в выемке, где первые два способа неприемлемы.

Недостатком способов углов и продолженных хорд является снижение точности разбивки кривой по мере возрастания ее длины, так как положение каждой последующей точки определяется относительно предыдущей.

Источник

Детальная разбивка кругов. кривых: способ прямоугольных координат, способ проложенных хорд, способ углов

Способ прямоугольных координат

Порядок разбивки данным способом следующий.

1)Задавшись длиной дуги S (расстояние между соседними точками разбивки), приняв нк или кк за начало координат, направление тангенсов на вершину угла за направление оси Х, вычисляют координаты точек кривой по формулам

2) По φ и R определяют главные элементы кривой – Т (тангенс, касательная к кривой), Б (биссектриса), К (длина кривой), Д (домер).

3) Закрепляют главные точки кривой – нк, ск, кк.

Для этого от вершины угла при помощи рулетки по направлению к началу трассы откладывают Т. Полученная точка является нк и закрепляется деревянным колышком. Затем откладывают Т от ВУ по направлению на последующее направление трассы, получают, таким образом кк, которую тоже закрепляют колышком. Внутренний угол при помощи теодолита делят пополам и на полученном направлении откладывают Б, получают ск.φ – угол поворота трассы (в данном случае вправо); ВУ – вершина угла; нк – начало кривой; кк – конец кривой; ск – середина кривой. Эти точки называют главными точками кривой. R – радиус кривой.

у1=R-R·cosβ=R·(1-cosβ)=2R·sin 2 х1=R·sinβ; у2=2R·sin 2 β; х2=R·sin2β;

уn=2R·sin 2 ; β= , ρ – радиан, единица плоского угла =206265″.

Значения хn, уn можно выбирать из таблиц для разбивки круговых кривых.

4) Вдоль тангенсов от нк и кк откладывают при помощи рулетки значения хn по перпендикуляру уn и закрепляют полученные точки колышками.

Способ продолженных хорд

Заключается в следующем :

1.По значению S и R вычисляют х1=Rsinβ; у1=2Rsin 2 и промежуточное перемещение в= (из подобия равнобедренных треугольников ∆ (1-2′ – 2) ∞ ∆ (1-2 – К) с равными вершинными углами β – в:S=S:R).

2.Точку 1 закрепляют колышком, отложив при помощи рулетки х1 от начала кривой по направлению на вершину угла (по оси Х) и у1 перпендикулярно этому направлению.

3.По точкам 0 – 1 натягивают ленту или рулетку и на продолжении 01 откладывают S, закрепляют точку 2′.

4.Точку 2 на кривой получают способом линейных засечек: пересечением отрезка S, который откладывают рулеткой из точки 1 и отрезка в, откладываемого из точки 2′. Полученную точку закрепляют деревянным колышком.

5.Таким же образом разбивают точки 3, 4, до середины кривой. Вторую половину кривой разбивают таким же образом от точки конца кривой.

Достоинство способа в том, что он применим на любой местности (косогоры, впадины и т.д.). Недостаток – с возрастанием длины кривой точность разбивки падает, так как положение последующей точки определяется относительно предыдущей. Происходит накопление ошибок.

В этом способе используется то положение, что углы с вершиной в какой-либо точке круговой кривой образован касательной АМ(Т) и соответствующей секущей равны половине соответствующего центрального угла. Данный способ заключается в построении угла q/2 в начале системы координат и последовательном откладывании хорды. При заданной длине хорды угол y определяют по формуле:

где в – длина хорды.

Для разбивки промежуточных точек кривой, теодолит устанавливают в НК или КК, ориентируют его по линии тангенса и откладывают от этой линии угол q/2 . Отложив вдоль построенного направления хорду l, закрепляют первую точку (В). Затем, в той же точке НК строят угол 2q/2 и откладывают хорду (В-С), получая на пересечении направления угла и хорды точку 2, и т.д. (рис. 179).

Линейные измерения выполняют вблизи кривой, что выгодно при разбивке точек на насыпи. Этот способ применяют для разбивки кривых земляных сооружений.

Порядок выполнения разбивки следующий:

— Выбирают из таблиц по радиусу угол Q/2 в зависимости от величины b (b=10,20,30 м).

— Устанавливают теодолит в точку А и от линии АМ фиксируют направление под углом Q/2.

— Вдоль этого направления откладывают длину хорды b и закрепляют на местности точку.

— Из точки А от направления АМ Фиксируют следующее направление под углом Q и вдоль него откладывают длину хорды. В такой последовательности выполняют разбивку всей кривой.

Источник

Читайте также:  Способы соединения деталей при вязании крючком
Оцените статью
Разные способы