Чтобы решить неравенство графическим способом необходимо сначала найти нули функции

Графическое решение неравенств

Приближённое решение неравенств.

Графическое решение неравенств с одним неизвестным.

Графическое решение систем неравенств с двумя неизвестными.

Графическое представление функций позволяет приближённо решать неравенства с одним неизвестным и системы неравенств с одним и двумя неизвестными. Чтобы решить графически неравенство с одним неизвестным, необходимо перенести все его члены в одну часть, т. e . привести к виду:

и построить график функции y = f ( x ). После этого, используя построенный график, можно найти нули функции (см. выше), которые разделят ось Х на несколько интервалов. Теперь на основе этого определим интервалы x , внутри которых знак функции соответствует знаку неравенства. Например, нули нашей функции: a и b ( рис.30 ). Тогда из графика очевидно, что интервалы, внутри которых f ( x ) > 0: x a и x > b ( они выделены жирными стрелками ). Ясно, что знак > здесь условный; вместо него может быть любой другой:

Чтобы решить графически систему неравенств с одним неизвестным, нужно перенести в каждом из них все члены в одну часть, т. e . привести неравенства к виду:

и построить графики функций y = f ( x ), y = g ( x ) , . , y = h ( x ). Каждое из этих неравенств решается графическим методом, описанным выше. После этого нужно найти пересечение решений всех неравенств, т. e . их общую часть.

П р и м е р . Решить графически систему неравенств:

Р е ш е н и е . Сначала построим графики функций y = — 2 / 3 x + 2 и

Решением первого неравенства является интервал x > 3, обозначенный на рис.31 чёрной стрелкой; решение второго неравенства состоит из двух интервалов: x — 1 и x > 1, обозначенных на рис.31 серыми стрелками.

Из графика видно, что пересечением этих двух решений является интервал x > 3. Это и есть решение заданной системы неравенств.

Чтобы решить графически систему двух неравенств сдвумя неизвестными, надо:

1) в каждом из них перенести все члены в одну часть, т. e . привести

нера венства к виду:

2) построить графики функций, заданных неявно: f ( x , y ) = 0 и g ( x , y ) = 0;

3) каждый их этих графиков делит координатную плоскость на две части:

в одной из них неравенство справедливо, в другой – нет; чтобы решить

графически каждое из этих неравенств, достаточно проверить

справедливость неравенства в одной произвольной точке внутри любой

части плоскости; если неравенство имеет место в этой точке, значит

эта часть координатной плоскости является его решением, если нет – то

решением является противоположная часть плоскости ;

4) решением заданной системы неравенств является пересечение

(общая область) частей координатной плоскости.

П р и м е р . Решить систему неравенств:

Р е ш е н и е . Сначала строим графики линейных функций: 5 x – 7 y = — 11 и

Читайте также:  Легальные способы проверки персональных данных реферат

2 x + 3 y = 10 ( рис.32 ). Для каждой из них находим полуплоскость,

внутри которой соответствующее заданное неравенство

справедливо. Мы знаем, что достаточно проверить справедливость

неравенства в одной произвольной точке области; в данном

случае легче всего использовать для этого начало координат O ( 0, 0 ).

Подставляя его координаты в наши неравенства вместо x и y ,

получим: 5 · 0 – 7 · 0 = 0 > — 11, следовательно, нижняя

полуплоскость ( жёлтого цвета ) является решением первого

неравенства; 2 · 0 + 3 · 0 = 0 неравенство

имеет своим решением также нижнюю полуплоскость ( голубого

цвета ). Пересечение этих полуплоскостей ( область цвета бирюзы )

является решением нашей системы неравенств.

Copyright © 2004 — 2007 Др. Юрий Беренгард. All rights reserved.

Источник

Построение графиков функций

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Читайте также:  Способы как зарядить айфон

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

У нас есть отличные онлайн занятия по математике для учеников с 1 по 11 классы! Приходи на пробное занятие с нашими лучшими преподавателями!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции

Упростим формулу функции:

при х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Задача 2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

x y
0 -1
1 2

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

x y
0 2
1 1

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

x y
0 0
1 2

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Задача 6. Построить графики функций:

б)

г)

д)

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а)

Преобразование в одно действие типа f(x) + a.

Сдвигаем график вверх на 1:

б)

Преобразование в одно действие типа f(x — a).

Сдвигаем график вправо на 1:

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

Сдвигаем график вправо на 1:

Сдвигаем график вверх на 2:

г)

Преобразование в одно действие типа

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

д)

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.



Сжимаем график в два раза вдоль оси абсцисс:


Сдвигаем график влево на 1/2 вдоль оси абсцисс:


Отражаем график симметрично относительно оси абсцисс:

Источник

Читайте также:  Сыворотка для волос андреа способ применения
Оцените статью
Разные способы