- Рациональные приёмы вычислений на уроках математики
- «Мозг хорошо устроенный ценится больше, чем мозг хорошо наполненный.»
- Рациональные уравнения (ЕГЭ 2022)
- Рациональные уравнения — коротко о главном
- Что такое рациональные уравнения?
- Целые рациональные уравнения
- Дробно-рациональные уравнения
- Алгоритм решения рационального уравнения
- Приемы рациональных вычислений на уроках математики в начальной школе
Рациональные приёмы вычислений на уроках математики
Разделы: Математика
Класс: 4
Ключевые слова: математика
«Мозг хорошо устроенный ценится больше,
чем мозг хорошо наполненный.»
Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.
Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро. Считать в уме можно только при большом желании и систематической тренировки. И тогда перед вами откроется совсем другая математика: живая, полезная, понятная.
Скажите, пожалуйста, как рациональнее сложить 1+ 7, 4 * 8? Какие законы применили?
27 + 46+13? 27 – 19 – 7? Какие свойства, законы? Т.е основы рациональных приёмов вычислений основаны на чём?
Методика преподавания математики в начальных классах раскрывает основы рациональных приёмов вычислений, связанных с выполнением разных математических действий с натуральными числами.
Рациональные приёмы сложения основываются
1. Коммуникативный закон сложения а +в =в +а
2. Ассоциативный закон сложения а+в+с = а+ (в+с)
на коммуникативном и ассоциативном приёмах сложения, а так же свойствах изменения суммы. Рассмотрим некоторые из них.
Свойства сложения.
1.1
а+в+с =У, то (а – к) +с+в = У –к
38+24+15 = 77, то 36+ 24+ 15 = ?
а+в+с=У, то (а+ к) +в +с = У+к
38 + 24+15 = 77, то 40+ 24 + 15 =?
1.2.
а+ в =С , то (а +к ) + (в – к) = С
56 + 27 = 83, то (56 + 4) + (27 – 4) = ?
Какие ещё рациональные приёмы сложения можно применить на уроке математики?
Округление одного из слагаемых; поразрядного сложения; приём группировки вокруг одного и того же «корневого» числа.
Рассмотрим эти приёмы:
13 + 49 + 76 + 61 = (поразрядное сложение)
38 + 59 = 38 + (…округление слагаемого)
26 + 24 + 23 +25 + 24 = (группировка вокруг одного и того же «корневого» числа
Все приёмы рациональных вычислений, связанных с вычитанием, основываются на законах вычитания.
Если уменьшаемое увеличить или уменьшить на число, то соответственно разность увеличится или уменьшится на это же самое число
а – в = С, то (а +к) — в = С +к
74 – 28 = 46, то 77 – 28 = 49
а-в = С , то (а – к ) — в = С-к
74 – 28 = 46, то 71 – 28 = 43
Если вычитаемое увеличить или уменьшить на несколько единиц, то разность измениться в противоположную сторону.
Если уменьшаемое и вычитаемое уменьшить или увеличить на одно и тоже число, то разность не измениться.
Найди верные равенства.
229 – 36 = (229 – 9 ) – ( 36 – 6)
174 – 58 = (174 – 4) – ( 58 – 4)
358 – 39 = ( 358 – 8 ) – (39 – 8)
617 – 48 = ( 617 – 7 ) – (48 – 8)
Для рациональных вычислений используют частичные приёмы умножения и деления.
Приём замены множителя или делителя на произведение.
75 * 8 = 75 * 2*2*2=
960 : 15 = 960 : 3 : 5 =
Приём умножения на 9, 99,999, 11 …
87 * 99 = 87 * 100- 87 = 8700 – 87 = 8613
87 * 11 = 87 *10 + 87 = 870+ 87 = 957
Успешное применение различных приёмов зависит от умения подмечать особенности чисел и их сочетаний. Например, познакомив детей в первом классе с натуральным рядом чисел и имея его перед глазами, легко закрепить состав числа.
0 1 2 3 4 5 6 7
Отработав, таким образом, состав чисел в пределах 10 и познакомившись с переместительным законом сложения, дети легко справляются с заданием найти сумму чисел в пределах 10, а в дальнейшем, используя переместительное и сочетательное свойство сложения, легко можно найти сумму других чисел. Например:
48 +14 +22 +36 =120
Существуют приёмы на знаниях некоторых свойств чисел или результатов действий. Легко находить сумму последовательных нечётных чисел, начиная с 1.
Она равна произведению количества слагаемых на самого себя. (проверить)
Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия. Для этого очень важно научить детей внимательно рассматривать условия задания, суметь подметить все его особенности. Такие задания, как поставь нужный знак действия16 … 17 = 33 ( рассуждать), далее подобные задания усложняются. 8…6…33 = 15
Сравни, не вычисляя
51 : 3 … 30 : 3 + 21 :5
636 :6 … 600 : 6+ 30 : 6+ 6 :6
Задания могут даваться в занимательной форме: Математический лабиринт, составь слово, найди пару , расшифруй пословицу и т.д.
Используй рациональные приёмы вычисления, разгадай слово
Какие приёмы использовали?
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приёмы, помогающие значительно облегчить процесс вычисления.
СЧЁТ НА ПАЛЬЦАХ: способ быстрого умножения чисел первого десятка на 9. Допустим нам надо умножить 7 на 9. Повернём ладошки к себе, загнём седьмой палец, число пальцев слева от загнутого пальца – это число десятков, а число – справа, количество единиц.
Все задания, которые рассматривались, воспитывают интерес к математике, развивают их математические способности. Такую работу можно продолжать на математическом кружке.
Источник
Рациональные уравнения (ЕГЭ 2022)
Рациональные уравнения – это уравнения, в которых и левая, и правая части – рациональные выражения.
Ну… Это было сухое математическое определение, и слово-то какое: «рациональные». А по сути, рациональные выражения – это просто целые и дробные выражения без знака корня.
Что же получается?
А получается, что под пугающим «рациональным уравнением» скрывается всего лишь уравнение, в котором могут присутствовать сложение, вычитание, умножение, деление и возведение в степень с целым показателем, но НЕ корень из переменной.
Рациональные уравнения — коротко о главном
Определение рационального уравнения:
Рациональное уравнение – это равенство двух рациональных (без знака корня) выражений.
Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
Алгоритм решения рациональных уравнений:
- Понять, точно ли это рациональное уравнение (убедись, что в нем нет корней);
- Определить ОДЗ;
- Найти общий знаменатель дробей и умножить на него обе части уравнения;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Система для решения дробно рациональных уравнений:
Что такое рациональные уравнения?
Давай научимся отличать рациональные уравнения от иррациональных! Зачем? Рациональные уравнения решать проще.
А зачем работать больше, если можно работать меньше?
- \( \displaystyle 3\cdot (x+1)=x\) как думаешь, какое это? Тут сложение, умножение, нет корней, и степеней никаких – рациональное;
- \( \displaystyle 3\cdot (x+1)=\sqrt
\) – вот тебе и корень из переменной, значит уравнение НЕ рациональное (иррациональное); - \( \displaystyle 3\cdot (x+1)=\frac<1>
\) а это – рациональное; - \( \displaystyle 3\cdot (x+1)=<
^<2>>\) тут вот степень, но она с целым показателем степени (\( \displaystyle 2\)– целое число) – значит это тоже рациональное уравнение; - \( \displaystyle 3\cdot (x+1)=<
^<-1>>\) даже уравнение с отрицательным показателем степени тоже является рациональным, ведь по сути \( \displaystyle < ^<-1>>\), это \( \displaystyle \frac<1> \); - \( \displaystyle 3\cdot (x+1)=<
^<0>>\) – тоже рациональное, т.к. \( \displaystyle < ^<0>>=1\); - \( \displaystyle 3\cdot (x+1)=<
^<\frac<1><2>>>\) – а с ним поосторожнее, степень-то дробная, а по свойству корней \( \displaystyle < ^<\frac<1><2>>>=\sqrt \), как ты помнишь, корня в рациональных уравнениях не бывает.
Надеюсь, теперь ты сможешь различать, к какому виду относится уравнение. (И не поедешь из Москвы в Петербург через Магадан, решая рациональные уравнения как нерациональные).
Целые рациональные уравнения
Важно знать, что рациональные уравнения в свою очередь тоже разные бывают.
Если в дроби нет деления на переменную (то есть на \( \displaystyle x\), \( \displaystyle y\) и т.д.), тогда рациональное уравнение будет называться целым (или линейным) уравнением, вот примеры:
Умеешь такие решать? – конечно, умеешь, упрощаешь и находишь неизвестное, тема-то 5-ого или 6-ого класса.
Ну, рассмотрим первый из примеров на всякий случай и по порядочку. Все неизвестные переносим влево, все известные вправо:
Какой наименьший общий знаменатель будет?
Правильно \( \displaystyle 6\)!
Чтоб к нему привести домножаем и числитель и знаменатель первого слагаемое на \( \displaystyle 2\), а второго на \( \displaystyle 3\), этого делать не запрещено, если и числитель и знаменатель дроби умножить на одно и то же значение, то дробь от этого не изменится, т.к. ее можно будет сократить на то же число.
А \( \displaystyle 13\) не трогаем, оно нам не мешает, имеем:
А теперь делим обе части на \( \displaystyle 13\):
Поскольку уравнение целое, что мы уже определили, то и ограничений никаких нет, \( \displaystyle 6\), так \( \displaystyle 6\), ну можно для верности подставить этот ответ в исходное уравнение, получим \( \displaystyle 0=0\), значит все верно и ответ подходит (ты можешь пересчитать, а вообще должно сойтись).
Дробно-рациональные уравнения
А вот еще одно уравнение \( \displaystyle \frac<5>
Это уравнение целое? НЕТ. Тут есть деление на переменную \( \displaystyle x\), а это говорит о том, что уравнение не целое. Тогда какое же оно? Это дробно рациональное уравнение.
Дробно-рациональное уравнение – рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
На первый взгляд особой разницы не видно, ну давай попробуем решать его как мы решали целое (линейное) уравнение.
Для начала найдем наименьший общий знаменатель, это будет \( \displaystyle (x+1)\cdot (x+3)\).
Важный момент!
В предыдущем примере, где было целое уравнение мы не стали свободный член \( \displaystyle 13\) приводить к знаменателю, т.к. умножали все на числа без переменных, но тут-то наименьший общий знаменатель \( \displaystyle (x+1)\cdot (x+3)\).
А это тебе не шутки, переменная в знаменателе!
Решая дробно-рациональное уравнение, обе его части умножаем на наименьший общий знаменатель!
Это надеюсь, ты запомнишь, но давай посмотрим что вышло:
Что-то оно огромное получилось, надо все посокращать:
\( \displaystyle 5(x+3)+(4
Раскроем скобки и приведем подобные члены:
Ну как, это уже попроще выглядит, чем в начале было?
Выносим за скобку общий множитель: \( \displaystyle 3x\cdot (x+1)=0\)
У этого уравнения два решения, его левая сторона принимает нулевое значение при \( \displaystyle x=0\) и \( \displaystyle x=-1\).
Вроде бы все, ну ладно давайте напоследок подставим корни \( \displaystyle x=0\) и \( \displaystyle x=-1\) в исходное уравнение, чтобы проверить, нет ли ошибок. Сначала подставим \( \displaystyle 0\), получается \( \displaystyle 3=3\) –нет претензий?
С ним все нормально. А теперь \( \displaystyle -1\), и тут же видим в знаменателе первого члена \( \displaystyle -1+1\)!
Но ведь это же будет ноль!
На ноль делить нельзя, это все знают, в чем же дело.
Дело в ОДЗ — Области Допустимых Значений!
Всякий раз когда ты видишь уравнение, где есть переменные (\( \displaystyle x,y\) и т.д.) в знаменателе, прежде всего, нужно найти ОДЗ, найти какие значения может принимать икс.
Хотя удобнее в ОДЗ написать, чему икс НЕ может быть равен, ведь таких значений не так много, как правило.
Просто запомни, что на ноль делить нельзя! И перед тем как решать наше уравнение нам следовало сделать так:
ОДЗ: \( \displaystyle x+1\ne 0\) и \( \displaystyle x+3\ne 0\) \( \displaystyle \Rightarrow x\ne -1\) и \( \displaystyle x\ne -3\).
Если бы мы сразу так написали, то заранее бы знали, что эти ответы стоит исключить и так, из полученных нами \( \displaystyle x=0\) и \( \displaystyle x=-1\) мы смело исключаем \( \displaystyle x=-1\), т.к. он противоречит ОДЗ.
Значит, какой ответ будет у решенного уравнения?
В ответ стоит написать только один корень, \( \displaystyle x=0\).
Стоит заметить, что ОДЗ не всегда сказывается на ответе, возможны случаи, когда корни, которые мы получили, не попадают под ограничения ОДЗ.
Но писать ОДЗ в дробно рациональных уравнениях стоит всегда – так просто спокойнее, что ты ничего не упустил и да,
ВСЕГДА по окончании решения сверяй свои корни и область допустимых значений!
Алгоритм решения рационального уравнения
- Понять, точно ли перед тобой рациональное уравнение (убедись, что в нем нет корней);
- Определить ОДЗ;
- Найти общий знаменатель дробей и умножить на него обе части уравнения;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Усвоил, говоришь? А ты докажи! 🙂 Вот тебе примеры на закрепление. Попробуй решить сам, а потом сверься с ответом.
Источник
Приемы рациональных вычислений на уроках математики в начальной школе
В школьной практике мы постоянно сталкиваемся с тем, что ребенок использует привычные, во многом навязанные ему способы решения. Так, например, некоторые дети, после того как изучены приемы письменных вычислений, начинают применять эти способы и при устном решении примеров. Это заставляет задуматься, что же побуждает детей обращаться к такому нерациональному приему решения? Думаю, стремление действовать в соответствии с определенными алгоритмами, избегая при этом активных усилий мысли. Т.о. перед нами встает одна из главнейших задач обучения математике – пробудить у школьника потребность активно мыслить, искать наиболее рациональные пути решения.
Прививая любовь к устным упражнениям, учитель будет помогать ученикам активно действовать с учебным материалом, пробуждать у них стремление совершенствовать способы вычислений и решения задач, менее рациональные заменять более совершенными и экономичными. А это – важнейшее условие сознательного усвоения материала. Направленность мыслительной деятельности ученика на поиск рациональных путей решения проблемы свидетельствует о вариативности мышления.
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приемы, помогающие значительно облгчить процесс вычисления. Некоторые из таких приемов не предусмотрены программой начальной школы, а между тем детей довольно легко подвести к ознакомлению с ними, используя современную программу и учебник.
Успешное применение различных приемов зависит в значительной мере от находчивости, изобретательности и умения подмечать особенности чисел и их сочетаний. Приемы устных вычислений основываются на знании нумерации, основных свойств действий, на сведении вычислений к более простым, результаты которых могут быть получены из табличных результатов.
Работа над приемами устных вычислений должна вестись с первого класса. Например, познакомив детей с натуральным рядом чисел и имея его перед глазами, легко закрепить состав чисел. Например, ряд чисел от 0 до 7. Поставив пальчики на крайние числа и передвигая их к центру, дети хором говорят: 7 – это 0 и 7; 1 и 6; 2 и 5 и т.д. Отработав таким образом состав чисел в пределах 10 и познакомившись с приемами перестановки слагаемых, дети легко справляются с заданием: найти сумму чисел от 1 до 10. Важно показать детям при этом и вычисления по порядку для сравнения, чтобы выделить более легкий и рациональный чисел. В дальнейшем, используя переместительное и сочетательное свойства сложения, легко можно найти сумму чисел: 18 + 23 + 22 + 17.
При выполнении устных вычислений иногда полезно округлять числа, прибавляя к ним несколько единиц или убавляя их. Подготовка к округлению чисел происходит на таких заданиях: сколько не хватает до 20, 30, . Далее навыки сложения и вычитания углубляются, ученики знакомятся с округлением компонентов арифметических действий. При выполнении таких заданий внимание обращается на выявление закономерности и нахождении более рационального приема вычислений.
Например: 27 + 59 = 27 + 50 + 3 + 6 (традиционный способ)
53 – 28 = 53 – 20 – 3 – 5 (традиционный способ)
А можно: 53 – 28 = 53 – 30 + 2 и т.д.
Здесь приемы следующие:
— округление одного или нескольких слагаемых;
— округление уменьшаемого или вычитаемого.
Существуют приемы, основанные на знаниях некоторых свойств чисел или результатов действий. Наблюдая примеры:
1 + 3 + 5 = 9 = 3 * 3
1 + 3 + 5 + 7 = 16 = 4 * 4 и т.д.,
легко находить сумму любого количества последовательных нечетных чисел, начиная с 1. Она равна произведению количества слагаемых на самого себя.
Можно использовать для вычислений такую закономерность:
9 + 10 + 11 + 12 = 13 + 14 + 15 и т.д.
Зная число Шахразады: 1001 = 7 * 11 * 13, сразу можно получить результат такого примера: 7 * 11 * 13 * 678 = 678678. Сразу можно написать ответ к выражению: 3* 7* 37 , зная, что 37 * 3 = 111 и т.д. Отсюда становится понятным моментальный ответ на задание: (10 2 + 11 2 + 12 2 + 13 2 + 14 2 ) : 365 = 2.
Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия в исходной вычислительной программе.
Например: 6 + 2 – 2; 7580 : 20 * 20; 783 * 4 + 783 * 6 – 703 * 8 * 0 и т.п.
Для этого очень важно научить детей внимательно рассматривать условие задания, суметь подметить все его особенности. Здесь главным является формирование установки на предварительный анализ условия задания. Этому помогают упражнения такого вида: 16 . 17 = 33. (Необходимо выбрать нужное арифметическое действие и обосновать). Рассуждения: было 16, стало 33, сумма увеличилась, значит выполняю действие сложения. Далее задания усложняются: 8 . 6 . 33 = 15.
Задания можно давать и в занимательной форме, например “Математический лабиринт”. Дети, выбирая то или иное арифметическое действие, сравнивают числа, им приходится мыслить целенаправленно, обосновывать сказанное.
Для рационализации вычислений существуют частные приемы умножения и деления:
- приемы деления на 3, 6, 9, 5 и т.д.;
- приемы умножения на 5, 9, 99, 999, 11, 101 и т.д.;
- прием замены множителя или делимого разностью 68 * 5 = ( 70 – 2) * 5;
- прием замены множителя или делителя произведением:
- 75 * 8 = 75 * 2 * 2 * 2;
- 960 : 15 = 960 : 3: 5;
- 84 * 84 = 7 * 12 * 7 * 12 = 49 * 144 = 50 * 144 – 144 = 100 * 72 – 144 = 7056.
Все эти приемы основаны на конкретном смысле умножения и помогают расширять знания детей о свойствах умножения и возможности рациональных вычислений задолго до знакомства с этими приемами в средней школе.
Вот как можно просто и быстро перемножать числа от 10 до 20: к одному из чисел надо прибавить количество единиц другого, умножить на 10 и прибавить произведение единиц чисел. Например: 16 * 18 = (16+8)*10 + 6*8 = 240 + 48 = 288
Используя описанный прием, ученик умножает на 10 и применяет табличное умножение, т.е. выполняет довольно простые мыслительные операции.
Овладение некоторыми приемами тождественных преобразований и рациональных вычислений готовит детей к успешному изучению математики в средней школе, а кроме того, перед учениками открывается совсем другая математика: живая, полезная и понятная. И очень жаль, если непонимание математических связей начинается в начальной школе. Как правило, к сожалению, такие дети не могут предложить нестандартное решение. Им трудно объяснить свой выбор, потому что они бояться ошибиться.
Источник