- Как подключить вольтметр
- Принцип действия
- Электромеханические аппараты
- Электронные приборы
- Подключение вольтметра
- Постоянное напряжение
- Переменное напряжение
- Видео
- Вольтметр. Назначение, устройство, как пользоваться и подключать вольтметр, принцип работы
- Как подключать вольтметр и производить измерения?
- Как работает вольтметр?
- Устройство
Как подключить вольтметр
Как и любую физическую величину, напряжение можно измерить, для этого используется вольтметр. Но чтобы получить достоверные данные, его необходимо правильно подключить.
Принцип действия
Все устройства, которыми производятся измерения в электрических сетях, делятся на две группы: электромеханические и электронные.
Электромеханические аппараты
Это стрелочные приборы. Стрелка в них закреплена на рамке, на которую намотан провод. Эта катушка находится на одной оси с постоянным магнитом в приборах, используемых в сети постоянного тока, или с другой катушкой – в устройствах переменного напряжения.
Справка. Аппарат переменного тока в сети постоянного работать не будет, но устройство для измерения постоянного напряжения, если включить его через диодный мост, можно подключить в сеть переменного тока с потерей точности.
При прохождении тока по обмотке в ней наводится электромагнитное поле, взаимодействующее с магнитом или другой обмоткой, и рамка поворачивается. Вращению катушки со стрелкой препятствует пружина, поэтому угол поворота рамки соответствует току через неё и потенциалу на клеммах.
Для уменьшения колебаний стрелки устанавливается демпфер электромагнитный из алюминиевой пластины или пневматический, из поршня и цилиндра.
Для повышения точности стрелка снабжена противовесами, исключающими влияние силы тяжести, а сам механизм выполняется из легированной стали для уменьшения износа.
Электронные приборы
В электронных аппаратах чувствительным элементом является электронная плата, преобразующая входной сигнал в показания прибора. Питание такое устройство может получать от измеряемого напряжения или другого источника – внутренних батарей или внешнего питания.
Электронные вольтметры есть двух типов:
- Аналоговые. В них находится преобразователь входного сигнала в угол поворота стрелки, показывающий на шкале величину измеряемого напряжения. Недостаток аналоговых схем – в необходимости пересчитывать показания шкалы при изменении предела измерения;
- Цифровые. В таких приборах есть цифровой дисплей и преобразователь, отображающий входной сигнал в цифровом виде. При подключении устройства в сеть постоянного тока на табло показывается полярность подключения. Эти конструкции отличаются компактностью, а точность такого аппарата зависит от качества встроенного контроллера.
Подключение вольтметра
Напряжение на источнике питания или элементе цепи измеряется аппаратом, который подключается параллельно устройству.
Катушка прибора имеет низкое сопротивление, и при непосредственном включении в сеть ток будет большим. Для уменьшения потребляемого тока и влияния на электрическую сеть в цепь последовательно с аппаратом включаются добавочные сопротивления.
Важно! При включении вольтметра последовательно с нагрузкой он покажет напряжение источника питания с погрешностью из-за сопротивления нагрузки. Последовательно подсоединяют амперметр.
Постоянное напряжение
Способы измерения постоянного напряжения зависят от его величины:
- до 1 милливольта – цифровыми и аналоговыми аппаратами со встроенным усилителем;
- до 1000 вольт используют обычные аппараты различных систем;
- свыше 1 кВ измерения производятся электростатическими приборами, предназначенными для работы в высоковольтных сетях или обычными, включёнными через делитель.
Увеличение предела измерения производится включёнием последовательно с прибором добавочного сопротивления Rдоб. Для увеличения предела в n раз общее сопротивление также необходимо увеличить в n раз и, учитывая сопротивление прибора Rпр, Rдоб=Rпр*(n-1). Показания шкалы также умножаются на n.
Переменное напряжение
Методы и типы устройств для измерения в сетях переменного тока зависят от величины напряжения и частоты сети:
- до 1 вольта – цифровые и аналоговые устройства с усилителями;
- до 1кВ и частотой до десятков кГц – выпрямительные системы, электромагнитные, электродинамические приборы;
- при частоте до десятков мегагерц – термоэлектрические и электростатические аппараты.
Важно! Вольтметр переменного тока показывает действующее значение напряжения. При синусоидальной форме его величина в √3 (1,7) меньше амплитудного.
Расширение пределов измерения производится включением через разделительный или автотрансформатор, а также использованием добавочного сопротивления. Его величина рассчитывается аналогично измерениям в сети постоянного тока.
При использовании разделительного трансформатора показания прибора умножаются на коэффициент трансформации n=U1/U2.
Подключение вольтметра необходимо производить по определённым схемам. Это делается для того, чтобы показания прибора соответствовали параметрам сети.
Видео
Источник
Вольтметр. Назначение, устройство, как пользоваться и подключать вольтметр, принцип работы
Вольтметр — это электроизмерительный прибор, который предназначен для измерения электрического напряжения на полюсах источника тока или на каком-нибудь участке электрической цепи. Эта величина задается в единицах, называемых вольтами, отсюда и название прибора — «Вольтметр». На практике значения электрического напряжения измеряются в различных диапазонах, от микровольт (мкВ) до мегавольт (МВ).
Эти приборы доступны в продаже, как в аналоговом, так и в цифровом исполнении.
Многие вольтметры по внешнему виду очень похожи на амперметры. Для отличия вольтметра от других электроизмерительных приборов на его шкале ставят букву V. На схемах вольтметр изображают кружком с буквой V внутри (см. рисунок 1).
Рисунок 1. Электрическая схема с вольтметром
Как подключать вольтметр и производить измерения?
Вольтметры всегда должны быть подключены параллельно с электрическим устройством или элементом, на котором измеряется электрическое напряжение (рисунок 2).
Рис. 2. Способ измерения электрического напряжения на концах элемента R
Ключевая мысль состоит в том, что зажимы вольтметра присоединяют к тем точкам электрической цепи, между которыми надо измерить электрическое напряжение.
Однако следует помнить, что при таком соединении часть тока IV будет протекать через вольтметр, а не через проверяемый элемент R. Таким образом, мы имеем дело с ситуацией, когда действие измерения физической величины изменяет значение этой величины. Это не единственный подобный пример в физике.
Как видно из предыдущих рассуждений, для измерения истинного значения электрического напряжения на концах элемент цепи, нам понадобится вольтметр с бесконечным сопротивлением. Тогда через измерительный прибор не будет протекать электрический ток, поэтому измерения будут неискаженными. На практике бесконечное электрическое сопротивление в вольтметре реализовать невозможно. Тем не менее, в настоящее время продаются вольтметры с чрезвычайно высоким внутренним сопротивлением, превышающим 100 ТОМ.
Стоит отметить, что считанное значение напряжения всегда меньше истинного значения. Это пример систематической ошибки измерения.
Истинное значение напряжения на концах элемента R на рис. 2, согласно закона Ома для участка электрической цепи, составляет: U = I*R
Но, так как вольтметр имеет внутреннее сопротивление, то он показывает значение: UV = IV * RV = IR * R .
После простых преобразований получаем, что реальное значение электрического напряжения на концах проверяемого элемента цепи R имеет значение: U = UV * (1 + R/RV )
Эта формула подтверждает наше предыдущее утверждение о том, что идеальный вольтметр должен иметь бесконечное внутреннее сопротивление. Поскольку коэффициент сопротивления в этой формуле стремится к бесконечности, измеренное значение UV стремится к истинному значению U. Поскольку в реальности не существует прибора, удовлетворяющего этому идеальному условию, при проведении измерений необходимо выбирать вольтметр таким образом, чтобы величина вносимой им ошибки находилась в пределах предполагаемой погрешности измерений.
Вывод: Чем выше внутреннее сопротивление вольтметра, тем меньше погрешность измерения; поэтому вольтметры всегда имеют очень высокое электрическое сопротивление.
Как и у амперметра, у одного зажима вольтметра ставят знак «+«. Этот зажим необходимо обязательно соединять с проводом, идущим от положительного полюса источника тока. Иначе стрелка прибора будет отклоняться в обратную сторону. А отрицательный зажим, соответственно, соединяют с проводом, идущим от отрицательного полюса источника тока.
Расширение диапазона измерений.
У аналоговых вольтметров диапазон измерения в принципе ограничен концом шкалы; если на измерительный прибор подается более высокое напряжение, то, с одной стороны, стрелка прибора не может отклониться дальше, а с другой стороны, даже сам прибор может быть поврежден (выйти из строя). Чтобы расширить диапазон измерений в большую сторону, необходимо использовать подходящую электрическую схему, обеспечивающую подачу на вольтметр только части измеряемого напряжения.
Этого можно достичь, объединив вольтметр с последовательно подключенным резистором (эти резисторы ещё называют — «добавочными резисторами»). Например, если вольтметр с диапазоном измерения 50 мВ имеет внутреннее сопротивление 100 Ом, то последовательный резистор со значением 900 Ом вызывает падение напряжения на вольтметре только на 1/10. Таким образом, диапазон измерений увеличивается в 10 раз, поэтому вольтметры теперь могут измерять напряжение до 500 мВ.
Верхние пределы расширения диапазона измерения практически отсутствуют. Если последовательный резистор в вышеприведенном примере имеет значение 99 900 Ом, то общее сопротивление равно 100 000 Ом, и на вольтметре падает только 1/1000 от приложенного напряжения. Соответственно, можно измерить в 1000 раз большее напряжение, т.е. максимум 50 В.
Более наглядно посмотреть, как подключаются добавочные резисторы в электрическую цепь вы можете видеть на рисунке 3 ниже.
Если мы хотим использовать вольтметр с диапазоном до UV для измерения напряжения до U1 , мы можем написать: U1 = I*RP + UV ,
В тоже время: UV = I*RV , тогда
после преобразований получаем, что сопротивление добавочного сопротивления должно иметь значение:
Мы также можем уменьшить диапазон измерения вольтметра. Для этого мы используем делители напряжения как на рис. 4.
Рис. 4. Делитель напряжения для уменьшения диапазона измерения вольтметра с UV до U1
При использовании цифровых измерительных приборов, измерение выполняется электронным способом и отображается на дисплее в цифровом виде. Однако проблема погрешности измерений и принцип расширения диапазона измерений идентичны для аналоговых и цифровых измерительных приборов.
Как работает вольтметр?
Существует два типа вольтметров: аналоговые, показывающие значение путем наклона стрелки механического прибора, и все чаще используемые в настоящее время цифровые, оснащенные сложными электронными схемами.
Аналоговые вольтметры обычно представляют собой амперметры с последовательно соединенным резистором RV с очень большим значением электрического сопротивления. То есть, по сути, они измеряют ток IV, протекающий через него, а шкала показывает значение, которое является результатом расчета: UV = IV * RV .
Цифровые приборы, как правило, имеют обратную конструкцию (то есть они являются именно вольтметрами, а не амперметрами). Это связано с тем, что изготовить цифровой измеритель напряжения относительно просто. Если мы подключим его параллельно резистору с малым сопротивлением, то получим амперметр. Значение индикатора может быть рассчитано по уравнению: UV = IV * RV .
Существует, однако, тип аналогового вольтметра, принцип действия которого не основан на принципе работы амперметра. Это электростатический вольтметр. На практике это конденсатор с одной неподвижной обкладкой и другой подвижной. Электрическое взаимодействие обкладок вызывает перемещение указателя, прикрепленного к движущейся части. С помощью такого вольтметра можно можно измерять даже очень высокие электрические напряжения, а значение его внутреннего сопротивление почти бесконечно.
Устройство
Рассмотрим устройство электростатического и электромагнитного вольтметра и способ их подключения к схеме.
На рисунке 5 показана конструкция электростатического вольтметра (слева) и электромагнитного вольтметра (справа) и как они соединены в электрическую цепь. Подвижные части вольтметров отмечены красным цветом.
Различные элементы вольтметров показаны цифрами.
Рисунок 5. Устройство вольтметров (электростатического — слева, электромагнитного — справа)
На рисунке 5 обозначено:
- Неподвижная часть крышки воздушного конденсатора.
- Подвижная часть обкладки воздушного конденсатора (чем сильнее притянута к неподвижной части, тем выше напряжение между обкладками).
- Указатель, который позволяет считывать результат по шкале.
- Указатель, который позволяет считывать результат по шкале.
- Катушка, через которую протекает ток, создающий магнитное поле.
- Ферромагнит, втянутый в катушку тем сильнее, чем сильнее протекающий через него ток (т.е. чем больше создаваемое им магнитное поле).
- Пружина, уравновешивающая втягивающее усилие.
- Направление магнитного поля, создаваемого катушкой.
- Добавочный резистор — для изменения диапазона измерения вольтметра.
- Проверка элемента электрической цепи.
- Проверка элемента электрической цепи.
- Электрическое напряжение на концах элемента R1.
- Электрическое напряжение на концах элемента R2.
Источник