Способы теплопередачи (теплообмена)
Турист остановился отдохнуть. Живительное тепло костра согревает и похлёбку в котелке, и самого туриста. Физик по этому поводу скажет: внутренняя энергия пламени переходит во внутреннюю энергию окружающих тел: воздуха, котелка, туриста. То есть между телами происходит теплообмен – переход некоторого количества теплоты от одного тела к другому.
На рисунке показаны три способа теплообмена: теплопроводность, излучение и конвекция. Путём теплопроводности через дно и стенки котелка внутренняя энергия пламени переходит во внутреннюю энергию туристской похлёбки. Путём излучения – во внутреннюю энергию ладоней туриста и других тел. А путём конвекции – во внутреннюю энергию воздуха над костром.
Теплообмен теплопроводностью. Многочисленные опыты показывают: теплопроводность различных веществ различна: при одинаковых условиях они передают теплоту с разной скоростью.
Проделаем опыт (см. рисунок). Две проволоки, например медную и стальную одинаковой длины и толщины, укрепим так, чтобы их концы попали в пламя свечи. Мы увидим, что маленькие гвоздики, приклеенные воском, с медной проволоки начнут падать раньше. Значит, теплота по медной проволоке распространяется быстрее, чем по стальной.
Тела и вещества, способные передавать теплоту с большой скоростью, называются теплопроводниками. К ним в первую очередь относятся все металлы. Большинство газов передают теплоту очень медленно. Теплопроводность жидкостей (кроме жидких металлов) занимает промежуточное положение между теплопроводностью твёрдых тел и газов. Тела и вещества, передающие теплоту с малой скоростью, называются теплоизоляторами. К ним, например, относятся пенопласт, поролон, древесина, мех, вата и др.
Теплообмен конвекцией. На рисунке вы видите тень руки с зажжённой спичкой при освещении её фонариком. Волнистые тени над пламенем создают струйки поднимающегося тёплого воздуха. Это – пример конвекции. Так называют явление возникновения струй или потоков в нагреваемых или охлаждаемых жидкостях и газах (где действует сила Архимеда). Кроме того, с точки зрения термодинамики конвекция – это способ теплообмена, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.
Теплоообмен конвекцией часто встречается вокруг нас. Например, отопительные батареи располагают вблизи пола, но из-за конвекции тепло распространяется по всей высоте комнаты. Конвективные потоки также возникают в атмосфере, способствуя возникновению ветров и облаков, а также внутри кастрюль, которые нагреваются на кухонной плите, и так далее.
Теплообмен излучением. Известно, что тела, которые нагреты сильнее, чем окружающая среда, способны излучать энергию. Обратимся к опыту (см. рисунок). Нагреем в пламени гвоздь и приблизим его к ладони, не касаясь её, – ладонь почувствует тепло. Освободим вторую руку и приложим ладони друг к другу. Мы почувствуем, что ладонь, находившаяся вблизи раскалённого гвоздя, теплее, чем вторая. То есть происходит переход теплоты от гвоздя к ладони через слой воздуха.
Однако при теплообмене излучением энергия может переноситься без участия вещества. Так, например, энергия Солнца достигает нашей планеты, преодолевая огромные расстояния через космический вакуум, в котором вещество отсутствует.
Обобщим изученное в этом параграфе. При теплообмене конвекцией энергия переносится струями или потоками неравномерно нагретого вещества. При теплообмене теплопроводностью энергия переносится через слой вещества, но само вещество при этом не движется. При теплообмене излучением энергия переносится без участия вещества.
Источник
Основы теории теплообмена
Теория теплообмена, основные понятия и определения. Теплопроводность. Предмет и методы теории теплообмена. Основные виды переноса теплоты. Понятия теплоотдачи и теплопередачи. Температурное поле, температурный градиент. Закон Фурье. Расчетные формулы стационарной теплопроводности для плоской и цилиндрической стенок при граничных условиях 1 и 3 рода (теплопередача).
Основы теории теплообмена
Теплопередача — это процесс переноса теплоты от одного теплоносителя к другому через разделяющую стенку. Теплопередача связана с весьма сложными процессами и при ее изучении необходимо знать законы теории теплообмена и методы анализа, применяемые в физике, термодинамике, гидродинамике и химии.
Сложный процесс переноса теплоты разбивают на ряд более простых. Такой прием упрощает его изучение. Кроме того, каждый простой процесс переноса теплоты подчиняется своим законам. Существует три простейших способа передачи теплоты: теплопроводность, конвекция, излучение.
Явление теплопроводности состоит в переносе теплоты микрочастицами (молекулами, атомами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур.
Конвективный теплоперенос (конвекция) наблюдается лишь в жидкостях и газах. Конвекция — это перенос теплоты вместе с макроскопическими объемами вещества. Следует иметь в виду, что одновременно с конвекцией всегда существует и теплопроводность. Однако конвекция обычно является определяющей, т. к. она интенсивнее теплопроводности.
Конвекцией можно передавать теплоту на очень большие расстояния (например, при движении газа по трубам). Движущаяся среда (жидкость или газ), используемая для переноса теплоты, называется теплоносителем.
Третьим способом переноса теплоты является излучение. За счет излучения теплота передается во всех лучепрозрачных средах, в том числе и в вакууме. Носителями энергии при теплообмене излучением являются фотоны, излучаемые и поглощаемые телами, участвующими в теплообмене.
В большинстве случаев перенос тепла осуществляется несколькими способами одновременно. Например, конвективная теплопередача от газа к стенке практически всегда сопровождается параллельным переносом теплоты излучением.
Основные понятия и определения
Интенсивность переноса теплоты характеризуется плотностью теплового потока. Плотность теплового потока — это количество теплоты, передаваемое в единицу времени через единичную плотность поверхности, q [Вт/м2].
Мощность теплового потока или просто тепловой поток — это количество теплоты, передаваемое в единицу времени через произвольную поверхность F, [Вт].
поверхность теплообмена F — это поверхность, через которую происходит передача тепла. Например, при остывании теплоносителя в трубе диаметром d и длиной l, тепло передается от горячего теплоносителя к окружающей среде через цилиндрическую поверхность трубы. В этом случае .
Перенос теплоты зависит от распределения температуры по объему тела или пространства. Температурным полем называется совокупность мгновенных значений температуры во всех точках тела или системы тел в данный момент времени. Математическое описание температурного поля имеет вид:
где t — температура;
x, y,z — пространственные координаты;
— время.
Температурное поле, описываемое приведенным уравнением, называется нестационарным. В этом случае температуры зависят от времени.
В том случае, когда распределение температуры в теле не изменяется со временем, температурное поле называется стационарным
если температура изменяется только по одной или двум пространственным координатам, то температурное поле называется соответственно одно— и двухмерным:
Температурные поля (1.2) и (1.3) называются трехмерными.
Поверхность, во всех точках которой температура одинакова, называется изотермической. Изотермические поверхности могут быть замкнутыми, но не могут пересекаться. Быстрее всего температура изменяется при движении в направлении, перпендикулярном изотермической поверхности. Скорость изменения температуры по нормали к изотермической поверхности характеризуется градиентом температуры.
Градиент температуры
(grad t) — есть вектор, направленный по нормали к изотермической поверхности и численно равный производной пот температуры по этому направлению:
,
Рисунок 1 — Расположение градиента температуры и вектора теплового потока относительно изотермы t2=Const температурного поля
где — единичный вектор, направленный в сторону возрастания температур нормально к изотермической поверхности.
Теория теплопроводности рассматривает тело как непрерывную среду. Согласно основному закону теплопроводности — закону Фурье — вектор плотности теплового потока, передаваемого теплопроводностью, пропорционален вектору градиента температуры:
,
где — коэффициент теплопроводности, Вт/(м×К). Он характеризует способность вещества, из которого состоит рассматриваемое тело, проводить теплоту.
Знак «-» указывает на противоположное направление вектора теплового потока и вектора градиента температуры. Вектор плотности теплового потока q всегда направлен в сторону наибольшего уменьшения температуры.
скалярная величина вектора плотности теплового потока:
,
Из формулы следует, что коэффициент теплопроводности определяет плотность теплового потока при градиенте температуры 1 К/м.
Коэффициент теплопроводности является физическим параметром и зависит от химической природы вещества и его физического состояния (плотности, влажности, давления, температуры). Диапазоны изменения для различных материалов приведены на рисунке 2.
Рисунок 2 — Теплопроводность при стационарном режиме
Однослойная плоская стенка
Рассмотрим однородную плоскую стенку толщиной d, на поверхностях которой поддерживаются температуры tс1 и tс2, причем tс1>tс2 (рис.3). температура изменяется только по толщине стенки — по одной координате х, коэффициент теплопроводности
. Теплового потока в этом случае, в соответствии с законом Фурье, определяется по формуле:
,
Рисунок 3 — Изменение температур по толщине однородной плоской стенки
,
где , причем tс1>tс2;
— внутреннее термическое сопротивление теплопроводности стенки, (м2×К)/Вт.
Распределение температур в плоской однородной стенке — линейное.
В большинстве практических задач приближенно предполагается, что коэффициент теплопроводности не зависит от температуры и одинаков по всей толщине стенки. значение
находят в справочниках при средней температуре
.
Тепловой поток (мощность теплового потока) определяется по формуле:
,
Многослойная плоская стенка
|
|
|
|
Рассмотрим для тех же условий многослойную плоскую стенку с толщиной слоев d1, d2,…, dn с соответствующими коэффициентами теплопроводности l1, l2,…, ln (рисунок 4). Здесь слои плотно прилегают друг к другу.
В этом случае плотность теплового потока определяется по формуле:
Рисунок 4 — Распределение температур по толщине многослойной плоской стенки
,
где n — число слоев многослойной стенки;
tc1 и tc(n+1) — температуры на внешних границах многослойной стенки;
— полное термическое сопротивление многослойной плоской стенки.
Плотность теплового потока, проходящего через все слои, в стационарном режиме одинакова. А так как коэффициент теплопроводности l различен, то для плоской многослойной стенки распределение температур — ломаная линия.
Рассчитав тепловой поток через многослойную стенку, можно найти температуру на границе любого слоя. Для к-го слоя можно записать:
,
Однородная цилиндрическая стенка
Задача о распространении тепла в цилиндрической стенке также одномерная, если ее рассматривать в цилиндрических координатах. температура изменяется только вдоль радиуса r, а по длине и по ее периметру остается неизменной.
В соответствии с законом Фурье, тепловой поток через однородную цилиндрическую стенку длиной l определяется по формуле:
,
Тепловой поток Q через цилиндрическую стенку можно отнести к единице длины l:
,
где ql — линейная плотность теплового потока, Вт/м;
— линейное термическое сопротивление теплопроводности трубы.
|