- Кодирование информации
- Кодирование различных видов информации
- Кодирование текстов
- Кодирования графических данных
- Кодирование звуков
- Кодирование видео
- Способ кодирования информации с помощью чисел. Двоичное кодирование
- Передача информации на расстояние
- Шифрование
- Двоичная система счисления
- Как осуществляет преобразование «обычной» информации в вид, пригодный для обработки и хранения ЭВМ
- Кодирование текстов
- Как осуществляется кодирование монохромной картинки в компьютере
- Представление цветных картинок
- Представление звуков
- Информатика
- Способы кодировки
- Двоичный код
- Обработка графических изображений
- Метод координат
- Перевод чисел в бинарный код
- Преобразование звука
- Обработка текста
Кодирование информации
Информация бывает разного вида, например:
— запах, вкус, звук;
— символы и знаки.
В разных отраслях науки, культуры и техники разработаны специальные формы для записи информации.
Код — это группа обозначений, которую можно использовать для отображения информации.
Процесс преобразования сообщения в комбинацию символов в соответствии с кодом называется кодированием .
- Числовой способ — с помощью чисел.
- Символьный способ — информация кодируется с помощью символов того же алфавита, что и исходящий текст.
- Графический способ — информация кодируется с помощью рисунков или значков.
Примеры кодирования информации:
— для отображения звуков русского алфавита используют буквы (АБВГДЕЁЖ…ЭЮЯ);
— для отображения чисел используют цифры (0123456789);
— звуки записывают нотами и другими символами;
— слепые используют азбуку Брайля, где буква состоит из шести элементов: дырочек и бугорков.
Надо учитывать, что не зная принципы кодирования информации, один и тот же код, можно понять по-разному, например, число 300522005 можно посчитать за число, номер телефона или за количество населения.
В компьютере кодируют введённую информацию: текст, изображения и звуки. В закодированном виде компьютер обрабатывает, хранит и пересылает информацию. Чтобы вывести информацию из компьютера в понятной для человека форме, её надо декодировать .
Методами шифрования занимается специальная наука — криптография .
В компьютере для кодирования любой информации используются только два символа: 0 и 1 , так как компьютерной технике проще реализовывать два состояния:
0 — сигнала нет (нету напряжения или не течёт ток);
1 — сигнал есть (есть напряжение или течёт ток).
Создание кода.
Одним битов можно кодировать два состояния: 0 и 1 (да и нет, чёрный и белый). При увеличении количества битов на один получится в два раза больше кодов.
Пример:
Два бита создают 4 разных кода: 00, 01, 10 и 11;
три бита создают 8 разных кодов: 000, 001, 010, 011, 100, 101, 110, и 111.
Кодирование различных видов информации
Кодирование текстов
При кодировании текста каждому символу присваивается какое-то значение, например, порядковый номер.
Первый популярный компьютерный стандарт кодирования текста имеет название ASCII (American Standart Code for Information Interchange), в котором для кодирования каждого символа используются 7 бит.
7-ю битами можно закодировать 128 символов: большие и маленькие латинские буквы, цифры, знаки препинания, а так же специальные символы, например, «§».
Стандарту создавали разные варианты, дополняя код до 8 бит (256 символов), чтобы можно было кодировать национальные символы, например, латышскую букву ā.
Но 256 символов не хватило, чтобы кодировать все символы разных алфавитов, поэтому создали новые стандарты. Один из самых популярных в наше время, это UNICODE. В котором каждый символ кодируют 2-мя байтами, получается в итоге 62536 разных кодов.
Кодирования графических данных
Почти все созданные и обработанные изображения, хранящиеся в компьютере, можно поделить на две группы:
Любое изображение созданное в растровой графике состоит их цветных точек. Эти точки называют пикселями (pixel) .
Для кодирования не цветных изображений обычно используют 256 оттенков серого, начиная от белого, заканчивая чёрным. Для кодирования всех цветов надо 8 битов (1 байт).
Для кодирования цветных изображений обычно используют три цвета: красный, зелёный и синий. Цветной тон получается при смешивании этих трёх цветов.
Размер изображения можно посчитать, умножив его ширину на длину в пикселях. Например, изображение размером 200⋅100 пикселей, занимает 60000 байт.
Кодирование звуков
Звуки появляются из-за колебаний воздуха. У звука есть две величины:
— амплитуда колебания, которая указывает на громкость звука;
— частота колебания, которая указывает на тональность звука.
Звук можно переделать в электрический сигнал, например, микрофоном.
Звук кодируют, после точного интервала времени измеряя размер сигнала и присваивая ему бинарную величину. Чем чаще проводятся эти измерения, тем лучше качество звука.
Пример:
На одном компакт диске, с объемом 700 Мб, может вместиться 80 минут звука CD качества.
Кодирование видео
Фильм состоит из кадров, которые быстро меняются. Кодированный фильм содержит информацию о размере кадра, используемых цветах, и количество кадров в секунду (обычно 30), как и способ записи звука — каждому кадру отдельно или всему фильму сразу.
Источник
Способ кодирования информации с помощью чисел. Двоичное кодирование
В процессе развития человечество пришло к осознанию необходимости хранить и передавать на расстояния ту или иную информацию. В последнем случае требовалось её преобразование в сигналы. Этот процесс называется кодированием данных. Текстовая информация, а также графические изображения при этом могут преобразоваться в числа. О том, каким образом это можно сделать, расскажет наша статья.
Передача информации на расстояние
Чтобы передать сообщение от автора к адресату (от источника к приемнику), чаще всего используются три вида систем передачи:
- фельдъегерско-почтовая;
- акустическая (например, посредством громкоговорителя);
- на основе того или иного способа электросвязи (проводная, радио, оптическая, радиорелейная, спутниковая, оптико-волоконная).
Наиболее распространенными на данный момент являются системы передачи последнего типа. Однако для их использования требуется предварительно применить тот или иной способ кодирования информации. С помощью чисел в привычном для современного человека десятичном исчислении сделать это крайне сложно.
Шифрование
Иногда содержание послания требуется скрыть от посторонних. В таком случае используется шифрование. При этом могут быть использованы различные способы кодирования информации с помощью чисел.
Двоичная система счисления
На заре компьютерной эры ученые были озабочены поисками устройства, которое бы позволило максимально просто представлять числа в ЭВМ. Вопрос разрешился, когда Клод Шенон предложил использовать двоичную систему счисления. Она была известна с 17 века, и для ее реализации требовалось устройство с 2 устойчивыми состояниями, соответствующими логической «1» и логическому «0». Их на тот момент было известно предостаточно — от сердечника, который мог быть либо намагниченным, либо размагниченным, до транзистора, способного находиться или в открытом, или в закрытом состоянии.
К плюсам двоичной системы исчисления относится также простота вычислений, которые можно производить над числами, представленными в двоичной записи.
Как осуществляет преобразование «обычной» информации в вид, пригодный для обработки и хранения ЭВМ
Компьютерный двоичный код технически реализуется отсутствием или наличием импульсов у микроскопических запоминающих элементов. Эти могут быть:
1. Фотооптические импульсы. Поверхность любого оптического диска (DVD, CD или BluRay) состоит из спирали, сформированной из мелких отрезков. Каждый из них либо светлого, либо темного цвета. Когда диск вращается в дисководе, на его спиральную дорожку фокусируется лазер. Его отражение попадает на фотоэлемент. Последний в данном случае является приемником информации. Светлые участки спирали отражают свет и передают его на фотоэлемент, темные, наоборот, поглощают свет. В результате на фотоэлемент поступает информация, зашифрованная в дорожке диска как темные и светлые точки.
2. Магнитные импульсы. С их помощью кодируется информация на жестком диске, внутри которого расположена быстро вращающаяся пластина. Как и в случае с оптическими дисками, вся ее поверхность — спираль, которая состоит из последовательности мелких участков в количестве нескольких миллионов. Каждый из них представляет собой элемент, который способен принимать одно из двух состояний: «намагниченное» или «ненамагниченное». Они формируют двоичный код той или иной информации. «Выяснение», в каком состоянии находится конкретный элемент, осуществляется посредством специальной головки, которая перемещается по поверхности пластины.
3. Электрические импульсы. Оперативная память ЭВМ представляет собой микросхему, состоящую из миллионов маленьких ячеек, «собранных» из микроскопических конденсаторов и транзисторов. Каждая из них может содержать электрический заряд или быть незаряженной. Комбинации ячеек оперативной памяти, которые находятся в одном из этих двух возможных состояний, формируют двоичный код. Во всех других устройствах на основе запоминающих микросхем, например, на флешках, SSD-носителях и пр., информация сохраняется точно таким же образом.
Кодирование текстов
Как уже было сказано, одним из видов преобразования информации для ее передачи и хранения является шифрование. Оно используется для защиты от несанкционированного доступа. Изначально для шифрования наряду с более примитивными применялись следующие способы кодирования информации:
- Посредством квадрата Полибия, представляющего собой таблицу, в которую в определенном порядке вписан весь греческий алфавит. Каждая буква сообщения заменялась парой чисел, представляющих собой номер столбца и строки.
- Посредством диска Альберти, состоящего из двух концентрических кругов. На них были нанесены буквы и цифры. Они ставились друг другу в соответствие путем вращения дисков.
Современный способ кодирования текстовой информации в компьютере основан на похожих принципах. Для его реализации каждому символу алфавита отвечает определенное целое число. Затем оно переводится в двоичный код. Восемь двоичных разрядов позволяют кодировать 256 различных символов. Их достаточно для представления всех букв английского и русского языков, включая прописные, знаков арифметических действий и препинания, а также некоторые общепринятые спецсимволов.
На данный момент действует система ASCII. Для нее закреплены 2 таблицы кодирования. Из них базовая определяет значения от 0 до 127, а расширенная представлена номерами от 128 до 255.
Как осуществляется кодирование монохромной картинки в компьютере
Любое черно-белое изображение, распечатанное на бумаге, под увеличительным стеклом выглядит как множество точек, которые принято называть растром. Линейные координаты и яркость каждой из можно выразить через целые числа. Это значит, что для растирования изображения можно использовать двоичный код. Общепринятым на данный момент считается представление монохромных иллюстраций в виде комбинации большого числа точек с 256 градациями серого. Для числового кодирования яркости любой из них требуется восьмиразрядное двоичное число.
Представление цветных картинок
Способ кодирования информации с помощью чисел для таких изображений реализуется несколько сложнее. С этой целью предварительно требуется декомпозиция картинки на 3 основных цвета (зеленый, красный и синий), так как в результате их смешения в определенных пропорциях можно получить любой оттенок, воспринимаемый человеческим глазом. Такой способ кодирования картинки с помощью чисел с использованием 24 двоичных разрядов называется RGB, или полноцветным (True Color).
Если же речь идет о полиграфии, то используется система CMYK. Она основана на идее о том, что каждую из основных компонент RGB можно поставить в соответствие с цветом, дополняющим её до белого. Ими являются голубой, пурпурный и желтый. Хотя их достаточно, с целью снижения полиграфических расходов, добавляют и четвертую компоненту — черную. Таким образом, для представления графики в системе CMYK требуется 32 двоичных разряда, а сам режим принято называть полноцветным.
Представление звуков
На вопрос о том, есть ли для этого способ кодирования информации с помощью чисел, ответ должен быть положительным. Однако на данный момент такие методы не считаются совершенными. К их числу относятся:
- Метод FM. Он основан на разложении любого сложного звука на последовательность элементарных гармонических сигналов разных частот, которые можно описать кодом.
- Таблично-волновой метод. В заранее составленных таблицах хранят сэмплы — образцы звуков для различных музыкальных инструментов. Числовые коды выражают тип и номер модели инструмента, высоту тона, интенсивность и продолжительность звука и пр.
Теперь вы знаете, что двоичное кодирование — один из распространенных способов представления информации, который сыграл огромную роль в развитии компьютерной техники.
Источник
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Примеры кодирования информации:
- трансляция письменных сообщений с использованием русских букв (АБВГД…ЭЮЯ);
- запись чисел цифрами (0123456789);
- использование языка жестов при общении глухонемых людей
Другими словами, переход сообщения из одной формы ее в другую, согласно определенным правилам, и выражает в чем суть кодирования информации.
Информация проходит кодирование в целях:
- упрощения сбора исходных данных;
- сокращения объема занимаемой памяти информационными сообщениями;
- удобства хранения материалов;
- эффективной обработки и обмена информацией;
- сокрытия необходимых сведений.
История кодирования информации насчитывает сотни веков. Издавна люди использовали криптограммы (зашифрованные сообщения).
В 19 веке с изобретением телеграфа С. Морзе был придуман и принципиально новый способ шифрования. Телеграфное сообщение передавалось по проводам последовательностью коротких и долгих сигналов (точка и тире).
Вслед за ним Ж. Бодо создал основополагающий в истории современной информатики метод бинарного кодирования информации, который заключается в применении всего двух различающихся электрических сигналов. Кодирование информации в компьютере также подразумевает использование двух чисел.
Разработанная в 1948г. К. Шенноном «Теория информации и кодирования» стала основополагающей в современном кодировании данных.
Кодирование информации в информатике, одна из базовых тем. Понимание для чего нужна процедура кодирования передаваемой информации, каким образом она осуществляется, поможет в изучении принципов работы компьютера.
Способы кодировки
Проанализируем разнообразные виды информации и особенности ее кодирования.
По принципу представления все информационные сведения можно классифицировать на следующие группы:
- графическая;
- аудиоинформация (звуковая);
- символьная (текстовая);
- числовая;
- видеоинформация.
Способы кодирования информации обусловлены поставленными целями, а также имеющимися возможностями,методами ее дальнейшей обработки и сохранения. Одинаковые сообщения могут отображаться в виде картинок и условных знаков (графический способ), чисел (числовой способ) или символов (символьный способ).
Соответственно происходит и классификация информации по способу кодирования:
- символьные сообщения включают знаки дорожного движения, сигналы светофора и т.д.;
- текстовые данные – это книги, нотные записи, различные документы;
- всевозможные изображения (фотографии, схемы, рисунки) представляют все многообразие графической информации.
Чтобы расшифровать сообщение, отображаемое в выбранной системе кодирования информации, необходимо осуществить декодирование – процесс восстановления до исходного материала. Для успешного осуществления расшифровки необходимо знать вид кода и методы шифрования.
Самыми распространенными видами кодировок информации являются следующие:
- преобразование текста;
- графическая кодировка;
- кодирование числовых данных;
- перевод звука в бинарную последовательность чисел;
- видеокодирование.
Различают такие методы кодирования информации как:
- метод замены (подстановки) – знаки первоначального сообщения заменяются на соответствующие символы выбранного кодового алгоритма;
- метод перестановки – символы оригинального текста меняются местами по определенной схеме;
- метод гаммирования – к исходным обозначениям добавляется случайная последовательность других знаков.
Двоичный код
Самый широко используемый метод кодирования информации – двоичное кодирование. Кодирование данных двоичным кодом применяется во всех современных технологиях.
Двоичный (бинарный) код — последовательность нолей и единиц. Это универсальный способ отображения любых информационных сведений (текстовых сообщений, картинок, звуковых и видеоматериалов). Сведения, закодированные в бинарном коде, очень удобно хранить, обрабатывать и передавать с одного электронного устройства на другое, в чем и заключается преимущества использования двоичного кодирования информации.
Двоичное кодирование информации применяется для различных данных:
- двоичное кодирование текстовой информации заключается в присвоении буквенным, цифровым и другим обозначениям определенного кода. Он записывается в компьютерной памяти цепочкой из нулей и единиц. Порядок кодирования алфавита в двоичный код с помощью стандарта ASCII является наглядным примером;
- вид используемой графики влияет на то, каким образом производится двоичное кодирование графической информации;
- двоичное кодирование звуковой информации происходит после дискретизации звуковой волны и присвоения каждому компоненту соответствующего бинарной цепочки чисел;
- кодирование двоичным кодом видеоматериалов сочетает принципы работы со звуком и растровыми изображениями.
Обработка графических изображений
Кодирование текстовой, звуковой и графической информации осуществляется в целях ее качественного обмена, редактирования и хранения. Кодировка информационных сообщений различного типа обладает своими отличительными чертами, но, в целом, она сводится к преобразованию их в двоичном виде.
Рисунки, иллюстрации в книгах, схемы, чертежи и т.п. – примеры графических сообщений. Современные люди для работы с графическими данными все чаще применяют компьютерные технологии.
Суть кодирования графической и звуковой информации заключается в преобразовании ее из аналогового вида в цифровой.
Кодирование графической информации – это процедура присвоения каждому компоненту изображения определенного кодового значения.
Способы кодирования графической информации подчиняются методам представления изображений (растрового или векторного):
- Принцип кодирования графической информации растровым способом заключается в присвоении бинарного шифра пикселям (точкам), формирующим изображение. Код содержит сведения о цветовых оттенках каждой точки. Примером служат снимки, сделанные на цифровом фотоаппарате.
- Векторная кодировка осуществляется благодаря использованию математических функций. Компонентам векторных изображений (точкам, прямым и другим геометрическим фигурам) присваивается двоичная последовательность, определяющая разнообразные параметры. Такая графика зачастую применяется в типографии.
Источник
Многим станет интересно: «В чем суть кодирования графической информации, представленной в виде 3D-изображений?» Дело в том, что работа с трехмерными данными сочетает способы растровой и векторной кодировки.
Кодирование и обработка графической информации различного формата имеет как свои преимущества, так и недостатки.
Метод координат
Любые данные можно передать с помощью двоичных чисел, в том числе и графические изображение, представляющие собой совокупность точек. Чтобы установить соответствие чисел и точек в бинарном коде, используют метод координат.
Метод координат на плоскости основан на изучении свойств точки в системе координат с горизонтальной осью Ox и вертикальной осью Oy. Точка будет иметь 2 координаты.
Если через начало координат проходит 3 взаимно перпендикулярные оси X, Y и Z, то используется метод координат в пространстве. Положение точки в таком случае определяется тремя координатами.
Система координат в пространстве
Перевод чисел в бинарный код
Числовой способ кодирования информации, т.е. переход информационных данных в бинарную последовательность чисел широко распространен в современной компьютерной технике. Любая числовую, символьную, графическую, аудио- и видеоинформацию можно закодировать двоичными числами. Рассмотрим подробнее кодирование числовой информации.
Привычная человеку система счисления (основанная на цифрах от 0 до 9), которой мы активно пользуемся, появилась несколько сотен тысяч лет назад. Работа всей вычислительной техники организована на бинарной системе счисления. Алфавитом у нее минимальный – 0 и 1. Кодировка чисел совершается путем перехода из десятичной в двоичную систему счисления и выполнении вычислений непосредственно с бинарными числами.
Кодирование и обработка числовой информации обусловлено желаемым результатом работы с цифрами. Так, если число вводится в рамках текстового файла, то оно будет иметь код символа, взятого из используемого стандарта. Для математических вычислений числовые данные преобразуются совершенно другим способом.
Принципы кодирования числовой информации, представленной в виде целых или дробных чисел (положительных, отрицательных или равных 0) отличаются по своей сути. Самый простой способ перевести целое число из десятичной в двоичную систему счисления заключается в следующем:
- число нужно разделить на 2;
- если частное больше 1, то необходимо продолжить деление до того момента, пока результат будет равен 0 или 1;
- записать результат последней операции и остатки от деления в обратной последовательности;
- полученное число и будет являться искомым кодовым значением.
Одна из важнейших частей компьютерной работы – кодирование символьной информации. Все многообразие цифр, русских и латинских букв, знаков препинания, математических знаков и отдельных специальных обозначений относятся к символам. Cимвольный способ кодирования состоит в присвоении определенному знаку установленного шифра.
Рассмотрим подробнее самые распространенные стандарты ASCII и Unicode – то, что применяется для кодирования символьной информации во всем мире.
Фрагмент таблицы ASCII
Первоначально было установлено, что для любого знака отводится в памяти компьютера 8 бит (1 бит – это либо «0», либо «1») бинарной последовательности. Первая таблица кодировки ASCII (переводится как «американский кодовый стандарт обмена сообщениями») содержала 256 символов. Ограниченная численность закодированных знаков, затрудняющая межнациональный обмен данными, привела к необходимости создания стандарта Unicode, основанного на ASCII. Эта международная система кодировки содержит 65536 символов. Закодировать огромное количество всевозможных обозначений стало возможным благодаря использованию 16-битного символьного кодирования.
Кодирование символьной и числовой информации принципиально отличается. Для ввода-вывода цифр на монитор или использовании их в текстовом файле происходит преобразование их согласно системе кодировки. В процессе арифметических действий число имеет совершенно другое бинарное значение, потому что оно переходит в двоичную систему счисления, где и совершаются все вычислительные действия.
Выбирать способ кодирования информации – графический, числовой или символьный необходимо отталкиваясь от цели кодировки. Например, число «21» можно ввести в компьютерную память цифрами или буквами «двадцать один», слово «ЗИМА» можно передать русскими буквами «зима» или латинскими «ZIMA», штрих-код товара передается изображением и цифрами.
Преобразование звука
Компьютерные технологии успешно внедряются в различные сферы деятельности, включая кодирование и обработку звуковой информации. С физической точки зрения, звук – это аналоговый сплошной сигнал. Процесс его перевода в ряд электрических импульсов называется кодированием звуковой информации.
Задачи, которые необходимо решить для успешной оцифровки сигнала:
- дискретизировать (разделить аудиоданные на элементарные участки путем измерения колебаний воздуха через одинаковые интервалы времени);
- оцифровать (присвоить каждому элементу числовой код).
Преобразование звука: а) аналоговый сигнал; б)дискретный сигнал.
Различают следующие методы кодирования звуковой информации:
- Метод FM. Суть его сводится к разделению звука аналого-цифровыми преобразователями (АЦП) на одинаковые простейшие элементы, которые в дальнейшем кодируются бинарным кодом. Несовершенство метода FM проявляется в низком качестве звукозаписи из-за потери некоторого объема исходного звукового сообщения.
- Метод Wave-Table (таблично-волновой) позволяет получить высококачественный продукт, поскольку разработанные таблицы сэмплов (образцов «живых» звуков) позволяют выразить бинарными числами разнообразные параметры поступающего сигнала.
Обработка текста
Текст – осмысленный порядок знаков. С использованием компьютера кодирование и обработка текстовой информации (набор, редактирование, обмен и сохранение письменного текста) значительно упростилось.
Кодирование текстовой информации – присвоение любому символу текста кода из кодировочной системы. Различают следующие стандарты кодировки:
- ASCII – первая международная система кодировки, содержащая коды на 256 знаков.
- Unicode – расширенный стандарт ASCII, превышающий ее размером в 256 раз.
- КОИ-8, СР1251, СР866, ISO – русские таблицы кодировки букв. При этом следует понимать, что документ, закодированный одним стандартом, не будет читаться в другом.
В задачах на кодирование текстовой информации часто встречаются следующие понятия:
- мощность алфавита;
- единицы измерения памяти (биты и байты).
Например, мощность алфавита ASCII составляет 256 символов. При этом один знак занимает 8 бит (или 1 байт) памяти, а Unicode – 35536 символов и 16 бит (или 2 байта) соответственно.
Источник