Что такое система счисления определенный способ представления

Содержание
  1. Система счисления
  2. Содержание
  3. Системы счисления
  4. Непозиционные системы счисления
  5. Позиционные системы счисления
  6. Типы систем счисления
  7. Системы счисления
  8. Что такое система счисления определенный способ представления
  9. Электронные облака
  10. Лекции
  11. Рабочие материалы
  12. Тесты по темам
  13. Template tips
  14. Задачи
  15. Логика вычислительной техники и программирования
  16. Лекция «Системы счисления»
  17. Классификация систем счисления
  18. Позиционные системы счисления
  19. Непозиционные системы счисления
  20. Алфавит и основание системы счисления
  21. Развёрнутая форма представления числа
  22. Системы счисления, используемые в вычислительной технике
  23. Решение задач
  24. Алгоритмы перевода в системы счисления по разным основаниям
  25. Алгоритм перевода чисел из любой системы счисления в десятичную
  26. Алгоритм перевода целых чисел из десятичной системы счисления в любую другую
  27. Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую
  28. Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую
  29. Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n
  30. Решение задач

Система счисления

Система счисления – это способ представления чисел и соответствующие ему правила действий над числами. Система счисления – это знаковая система, в которой числа записываются по определенным правилам с помощью символов некоторого алфавита, называемых цифрами.

Содержание

Известно множество способов представления чисел. В любом случае число изображается символом или группой символов (словом) некоторого алфавита. Такие символы называют цифрами.

Системы счисления

Для представления чисел используются непозиционные и позиционные системы счисления.

Непозиционные системы счисления

Как только люди начали считать, у них появилась потребность в записи чисел. Находки археологов на стоянках первобытных людей свидетельствуют о том, что первоначально количество предметов отображали равным количеством каких-либо значков (бирок): зарубок, черточек, точек. Позже, для облегчения счета, эти значки стали группировать по три или по пять. Такая система записи чисел называется единичной (унарной), так как любое число в ней образуется путём повторения одного знака, символизирующего единицу. Отголоски единичной системы счисления встречаются и сегодня. Так, чтобы узнать, на каком курсе учится курсант военного училища, нужно сосчитать, какое количество полосок нашито на его рукаве. Сами того не осознавая, единичной системой счисления пользуются малыши, показывая на пальцах свой возраст, а счетные палочки используется для обучения учеников 1–го класса счету. Рассмотрим различные системы счисления.

Единичная система – не самый удобный способ записи чисел. Записывать таким образом большие количества утомительно, да и сами записи при этом получаются очень длинными. С течением времени возникли иные, более удобные, системы счисления.

Древнеегипетская десятичная непозиционная система счисления. Примерно в третьем тысячелетии до нашей эры древние египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел 1, 10, 100 и т.д. использовались специальные значки – иероглифы. Все остальные числа составлялись из этих ключевых при помощи операции сложения. Система счисления Древнего Египта является десятичной, но непозиционной. В непозиционных системах счисления количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа. Например, чтобы изобразить 3252 рисовали три цветка лотоса (три тысячи), два свернутых пальмовых листа (две сотни), пять дуг (пять десятков) и два шеста (две единицы). Величина числа не зависела от того, в каком порядке располагались составляющие его знаки: их можно было записывать сверху вниз, справа налево или вперемежку.

Римская система счисления. Примером непозиционной системы, которая сохранилась до наших дней, может служить система счисления, которая применялась более двух с половиной тысяч лет назад в Древнем Риме. В основе римской системы счисления лежали знаки I (один палец) для числа 1, V (раскрытая ладонь) для числа 5, X (две сложенные ладони) для 10, а для обозначения чисел 100, 500 и 1000 стали применять первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча). Чтобы записать число, римляне разлагали его на сумму тысяч, полутысяч, сотен, полусотен, десятков, пятков, единиц. Например, десятичное число 28 представляется следующим образом:

XXVIII=10+10+5+1+1+1 (два десятка, пяток, три единицы).

Для записи промежуточных чисел римляне использовали не только сложение, но и вычитание. При этом применялось следующее правило: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него. Например, IX – обозначает 9, XI – обозначает 11.

Десятичное число 99 имеет следующее представление:

Римскими цифрами пользовались очень долго. Еще 200 лет назад в деловых бумагах числа должны были обозначаться римскими цифрами (считалось, что обычные арабские цифры легко подделать). Римская система счисления сегодня используется, в основном, для наименования знаменательных дат, томов, разделов и глав в книгах.

Алфавитные системы счисления. Более совершенными непозиционными системами счисления были алфавитные системы. К числу таких систем счисления относились греческая, славянская, финикийская и другие. В них числа от 1 до 9, целые количества десятков (от 10 до 90) и целые количества сотен (от 100 до 900) обозначались буквами алфавита. В алфавитной системе счисления Древней Греции числа 1, 2, . 9 обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел 10, 20, . 90 применялись следующие 9 букв а для обозначения чисел 100, 200, . 900 – последние 9 букв.

У славянских народов числовые значения букв установились в порядке славянского алфавита, который использовал сначала глаголицу, а затем кириллицу.

В России славянская нумерация сохранилась до конца XVII века. При Петре I возобладала так называемая арабская нумерация, которой мы пользуемся и сейчас. Славянская нумерация сохранилась только в богослужебных книгах.

Непозиционные системы счисления имеют ряд существенных недостатков:

  • Существует постоянная потребность введения новых знаков для записи больших чисел.
  • Невозможно представлять дробные и отрицательные числа.
  • Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Позиционные системы счисления

В позиционных системах счисления – количественный эквивалент каждой цифры зависит от ее положения (позиции) в коде(записи) числа. Ныне мы привыкли пользоваться десятичной позиционной системой — числа записываются с помощью 10 цифр. Самая правая цифра обозначает единицы, левее — десятки, ещё левее — сотни и т.д.

Например: 1) шестидесятеричная (Древний Вавилон)– первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1мин = 60с, 1ч = 60мин); 2) двенадцатеричная система счисления (широкое распространение получила в XIX в. число 12 – “дюжина”: в сутках две дюжины часов). Счёт не по пальцам, а по суставам пальцев. На каждом пальце руки, кроме большого, по 3 сустава – всего 12; 3) в настоящее время наиболее распространёнными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная (широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами).

В любой позиционной системе число может быть представлено в виде многочлена.

Читайте также:  Определение реакций идеальных связей аналитическим способом решение задач сетков

Покажем, как представляют в виде многочлена десятичное число:

Типы систем счисления

Самое главное, что нужно знать о системе счисления – её тип: аддитивная или мультипликативная. В первом типе каждая цифра имеет своё значение, и для прочтения числа нужно сложить все значения использованных цифр:

XXXV = 10+10+10+5 = 35; CCXIX = 100+100+10–1+10 = 219;

Во втором типе каждая цифра может иметь разные значения в зависимости от своего местоположения в числе:

(иероглифы по порядку: 2, 1000, 4, 100, 2, 10, 5)

Здесь дважды использован иероглиф “2”, и в каждом случае он принимал разные значения “2000” и “20”.

2´ 1000 + 4´ 100+2´ 10+5 = 2425

Для аддитивной (“добавительной”) системы нужно знать все цифры-символы с их значениями (их бывает до 4-5 десятков), и порядок записи. Например, в Латинской записи если меньшая цифра записана перед большей, то производится вычитание, а если после, то сложение (IV = (5–1) = 4; VI = (5+1) = 6).

Для мультипликативной системы нужно знать изображение цифр и их значение, а так же основание системы счисления. Определить основание очень легко, нужно только пересчитать количество значащих цифр в системе. Если проще, то это число, с которого начинается второй разряд у числа. Мы, например, используем цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Их ровно 10, поэтому основание нашей системы счисления тоже 10, и система счисления называется “десятичная”. В вышеприведенном примере используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (вспомогательные 10, 100, 1000, 10000 и т. д. не в счет). Основных цифр здесь тоже 10, и система счисления – десятичная.

Как можно догадаться, сколько есть чисел, столько же может быть и оснований систем счисления. Но используются только самые удобные основания систем счисления. Как вы думаете, почему основание самой употребительной человеческой системы счисления 10? Да, именно потому, что на руках у нас 10 пальцев. “Но на одной то руке всего пять пальцев” – скажут некоторые и будут правы. История человечества знает примеры пятеричных систем счисления. “А с ногами – двадцать пальцев” – скажут другие, и будут тоже абсолютно правы. Именно так считали индейцы Майя. Это даже видно по их цифрам.

Очень интересно понятие “дюжина”. Всем известно, что это 12, но откуда появилось такое число – мало кто знает. Посмотрите на свои руки, вернее, на одну руку. Сколько фаланг на всех пальцах одной руки, не считая большого? Правильно, двенадцать. А большой палец предназначен отмечать отсчитанные фаланги.

А если на другой руке откладывать пальцами количество полных дюжин, то получим всем известную шестидесятеричную вавилонскую систему.

В разных цивилизациях считали по–разному, но и сейчас можно даже в языке, в названиях и изображениях цифр найти остатки совсем других систем счисления, когда–то использовавшихся этим народом.

Так у французов когда-то была двадцатеричная система счисления, поскольку 80 по-французски звучит как “четырежды двадцать”.

Римляне, или их предшественники использовали когда-то пятеричную систему, так как V ни что иное, как изображение ладони с отставленным большим пальцем, а X – это две таких же руки.

Источник

Системы счисления

Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).

Системы счисления бывают:

  • непозиционными (в этих системах значение цифры не зависит от ее позиции — положения в записи числа);
  • позиционными (значение цифры зависит от позиции).

Непозиционные системы счисления

Примеры: унарная, римская, древнерусская и др.

Позиционные системы счисления

Основание системы счисления —

количество различных цифр, используемых в этой системе.

отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде

где i — номер разряда, а s — основание системы счисления.

Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:

По определению веса разряда

где i — номер разряда, а s — основание системы счисления.

Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:

Например, для системы счисления с основанием 4:

1302.24 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1

Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:

1302.24 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 + 2⋅4 -1 =

= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =

= 64 + 48 + 2 + 0,5 = 114,5

Таким образом, для перевода числа из любой системы счисления в десятичную следует:

  1. пронумеровать разряды исходного числа;
  2. записать сумму, слагаемые которой получаются как произведения очередной цифры на основание системы счисления, возведенное в степень, равную номеру разряда;
  3. выполнить вычисления и записать полученный результат (указав основание новой системы счисления — 10).

Вспомним пример перевода из системы счисления с основанием 4 в десятичную:

13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114

Иначе это можно записать так:

114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024

Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно

Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.

В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:

  1. Выполнить последовательное деление с остатком исходного числа и каждого полученного частного на основание новой системы счисления.
  2. Записать вычисленные остатки, начиная с последнего (т.е. в обратном порядке)

Источник

Что такое система счисления определенный способ представления

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Системы счисления»

Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.

Символы, при помощи которых записывается число, называются цифрами.

  • даёт представления множества чисел (целых или вещественных)
  • даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление)
  • отражает алгебраическую и арифметическую структуру чисел.

Разные народы в разные времена использовали разные системы счисления. Следы древних систем счета встречаются и сегодня в культуре многих народов. К древнему Вавилону восходит деление часа на 60 минут и угла на 360 градусов. К Древнему Риму — традиция записывать в римской записи числа I, II, III и т. д. К англосаксам — счет дюжинами: в году 12 месяцев, в футе 12 дюймов, сутки делятся на 2 периода по 12 часов.

По современным данным, развитые системы нумерации впервые появились в древнем Египте. Для записи чисел египтяне применяли иероглифы один, десять, сто, тысяча и т.д. Все остальные числа записывались с помощью этих иероглифов и операции сложения. Недостатки этой системы — невозможность записи больших чисел и громоздкость.

Читайте также:  Легкий способ собрать кубик рубик ребенку

В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.

Классификация систем счисления

Системы счисления подразделяются на позиционные и непозиционные.

Позиционные системы счисления

Позиционные системы счисления (СС) — это системы счисления, в которых количественный эквивалент каждой цифры (её вес) зависит от ее положения (позиции) в записи числа.

Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).

Например:
число 237 состоит из 3 цифр. Понятно, что отдельно взятая цифра 7 больше чем цифра 2. Однако, в составе числа, двойка стоит на позиции сотен, а семёрка — на позиции единиц, поэтому количественное представление двойки — две сотни, или двести, а семёрка — всё та же семь.

Многие, кроме десятичной СС, о других позиционных системах не имеют представления, хотя и часто ими пользуются. Например:

  1. шестидесятиричная (Древний Вавилон) — первая позиционная система счисления. До сих пор при измерении времени используется основание равное 60 (1 мин = 60 с, 1 ч = 60 мин);
  2. двенадцатеричная система счисления (широкое распространение получила в XIX в. Число12 — «дюжина»: в сутках две дюжины часов. Счет не по пальцам. а по суставам пальцев. На каждом пальце руки, кроме большого, по 3 сустава — всего 12;

В настоящее время наиболее распространенными позиционными системами счисления являются десятичная, двоичная, восьмеричная и шестнадцатеричная.

Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.

Достоинства позиционных систем счисления:

  • в позиционных системах счисления устранены все недостатки непозиционных:
  • в них можно записать любое число (как натуральное, таки действительное);
  • запись чисел компактна и удобна;
  • благодаря поразрядной организации записи чисел с ними легко проводить математические операции.

Непозиционные системы счисления

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.

Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:

I V X L С D М
1 5 10 50 100 500 1000

С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).

Правила записи чисел в римской системе счисления:

  • если большая цифра стоит перед меньшей, они складываются, например: VI – 6 (5+1);
  • если меньшая цифра стоит перед большей, то из большей вычитается меньшая, причем в этом случае меньшая цифра уже повторяться не может, например: XL — 40 (50-10), XXL – нельзя;
  • цифры М, С, Х, I могут повторяться в записи числа не более трех раз подряд;
  • цифры D, L, V могут использоваться в записи числа только по одному разу.

Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.

Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:

  • в них нельзя записать любое число;
  • запись чисел обычно громоздка и неудобна;
  • математические операции над ними крайне затруднены.

Алфавит и основание системы счисления

Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
Десятичная система: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>
Двоичная система: <0, 1>
Восьмеричная система: <0, 1, 2, 3, 4, 5, 6, 7>
Шестнадцатеричная система:

Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых задает количественное значение или «вес» каждого разряда. Например: Базисы некоторых позиционных систем счисления.
Десятичная система: 10 0 , 10 1 , 10 2 , 10 3 , 10 4 ,…, 10 n ,…
Двоичная система: 2 0 , 2 1 , 2 2 , 2 3 , 2 4 ,…, 2 n ,…
Восьмеричная система: 8 0 , 8 1 , 8 2 , 8 3 , 8 4 ,…, 8 n ,…
Пример. Десятичное число 4718,63, двоичное число 1001,1, восьмеричное число 7764,1, шестнадцатеричное число 3АF.

Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.

Развёрнутая форма представления числа

В позиционной системе счисления любое вещественное число в развернутой форме может быть представлено в следующем виде:
А = ± (an-1q n-1 +an-2q n-2 + … +a0q 0 +a-1q -1 +a-2q -2 + … +a-mq -m )
Здесь:
А — само число,
q
— основание системы счисления,
ai
— цифры, принадлежащие алфавиту данной системы счисления,
n
— число целых разрядов числа,
m
— число дробных разрядов числа.

Развернутая форма записи числа — сумма произведений коэффициентов на степени основания системы счисления.

Пример. Десятичное число А10 = 4718,63 в развернутой форме запишется так:
А10 = 4•10 3 + 7•10 2 + 1•10 1 + 8•10 0 + 6•10 -1 + 3•10 -2
Двоичное число А2 = 1001,1 = 1•2 3 + 0•2 2 + 0•2 1 + 1•2 0 + 1•2 -1
Восьмеричное число А8 = 7764,1 = 7•8 3 + 7•8 2 + 6•8 1 + 4•8 0 + 1•8- 1
Шестнадцатеричное число А16 = 3АF = 3•16 2 + 10•16 1 + 15•16 0

Системы счисления, используемые в вычислительной технике

Несмотря на то, что исторически человек привык работать в десятичной системе счисления, с технической точки зрения она крайне неудобна, так как в электрических цепях компьютера требовалось бы иметь одновременно десять различных сигналов. Тем не менее, такие схемы существуют в некоторых видах микрокалькуляторов.

Чем меньше различных сигналов в электрических цепях, тем проще микросхемы, являющиеся основой конструкции большинства узлов ЭВМ, и тем надежнее они работают.

Наименьшее основание, которое может быть у позиционных систем счисления это – двойка. Именно поэтому двоичная система счисления используется в вычислительной технике, а двоичные наборы приняты за средство кодирования информации. В компьютере имеются только два устойчивых состояния работы микросхем, связанных с прохождением электрического тока через данное устройство (1) или его отсутствием (0). Говоря точнее, (1) кодирует высокое напряжение в схеме компьютера, а (0) – низкое напряжение.

Читайте также:  Способ вычисления абсолютных показателей

Если вспомнить, что двоичная система счисления обладает самыми маленькими размерами таблиц сложения и умножения, то можно догадаться, что этот факт должен сильно радовать конструкторов ЭВМ, поскольку обработка сигнала в этом случае будет также самой простой. Таким образом, двоичная система счисления, с точки зрения организации работы ЭВМ, является наилучшей.

Мы уже говорили о преимуществах двоичной системы счисления с технической точки зрения организации работы компьютера. Зачем нужны другие системы счисления, кроме, естественно, еще и десятичной, в которой человек привык работать? Чтобы ответить на него, возьмем любое число в десятичной системе счисления, например 255, и переведем его в другие системы счисления с основаниями, кратными двойке:

Чем меньше основание системы счисления, тем больше разрядов требуется для его записи то есть, тем самым мы проигрываем в компактности записи чисел и их наглядности. Поэтому, наряду с двоичной и десятичной системами счисления, в вычислительной технике применяют так же запись чисел в 8-и 16-ричных системах счисления. Поскольку их основания кратны двойке, они органично связаны с двоичной системой счисления и преобразуются в эту систему наиболее быстро и просто (по сути они являются компактными видами записи двоичных чисел). Все другие системы счисления представляют для вычислительной техники чисто теоретический интерес.

Решение задач

1. Какое число записано с помощью римских цифр: CLVI

Решение: Зная обозначения, запишем: С – 100; L – 50; V – 5; I – 1

Пользуемся правилом записи чисел в римской системе счисления:

  • Т.к. большая стоит перед меньшей – CL, то они складываются (С+L = 100 + 50 = 150).
  • Т.к. большая цифра стоит перед меньшей – VI, то они складываются (V + I = 5 + 1 = 6). Следовательно, 150 + 6 = 156

Ответ: CLVI = 15610

2. Записать в развёрнутом виде число: 3ВFA16

Решение: Пользуемся формулой:

a1 = 3; a2 = B; a3 = F; a4 = A

Следовательно: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*16 0
Ответ: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*160

3. Запишите в свёрнутой форме число 1*8 2 + 4*8 1 + 7*8 0

Решение: Пользуемся формулой:

a1 = 1; a2 = 4; a3 = 7

Следовательно: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Ответ: 1*8 2 + 4*8 1 + 7*8 0 = 1478

4. Используя приложение Калькулятор операционной системы Windows запишите значения числа 1010 10 в различных системах счисления.
Для этого:

  1. откройте калькулятор: ПУСК-ПРОГРАММЫ-СТАНДАРТНЫЕ-КАЛЬКУЛЯТОР
  2. настройте вид калькулятора на инженерный: ВИД-ИНЖЕНЕРНЫЙ
  • Dec – десятичная система счисления
  • Oct – восьмеричная система счисления
  • Bin – двоичная система счисления
  • Hex – шестнадцатеричная система счисления
  1. поставьте флажок в Dec и наберите число 1010
  2. поставьте флажок в Oct – вы увидите данное число, представленное в 8-ой системе счисления (запишите результат)
  3. поставьте флажок в Bin – вы увидите данное число, представленное в 2-ой системе счисления (запишите результат)
  4. поставьте флажок в Hex – вы увидите данное число, представленное в 16-ой системе счисления (запишите результат)

Алгоритмы перевода в системы счисления по разным основаниям

Алгоритм перевода чисел из любой системы счисления в десятичную

  1. Представить число в развернутой форме. При этом основание системы счисления должно быть представлено в десятичной системе счисления.
  2. Найти сумму ряда. Полученное число является значением числа в десятичной системе счисления.

Алгоритм перевода целых чисел из десятичной системы счисления в любую другую

  1. Последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получится частное, меньше делителя.
  2. Полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.
  3. Составить число в новой системе счисления, записывая его, начиная с последнего остатка.

Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую

  1. Последовательно умножаем данное число и получаемые дробные части произведения на основание новой системы счисления до тех пор, пока дробная часть произведения не станет равна нулю или будет достигнута требуемая точность представления числа.
  2. Полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления.
  3. Составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую

Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n

Для облегчения решения задач заполним следующую таблицу:

Десятичная Двоичная Восьмеричная Шестнадцатеричная
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Если основание q-ричной системы счисления является степенью числа 2, то перевод чисел из q-ричной систему счисления в 2-ичную и обратно можно проводить по более простым правилам.

  1. Двоичное число разбить справа налево на группы по n в каждой.
  2. Если в левой последней группе окажется меньше n разрядов, то её надо дополнить слева нулями до нужного числа разрядов.
  3. Рассмотреть каждую группу как n-разрядное двоичное число и записать её соответствующей цифрой в системе счисления с основанием q=2 n

Решение задач

1. Переведём в 10-ую с.с. число: 0,1235

Решение: Действуем строго по алгоритму перевода чисел из любой системы счисления в десятичную:

Запишем число в развёрнутой форме: 0,1235 = 1*5 –1 + 2*5 – 2 + 3*5 -3

Найдём сумму ряда: 0,2 + 0,08 + 0,024 = 0,30410

Ответ: 0,1235 = 0,30410

2. Переведём число 12610 в 8-ую с.с. и число 18010 в 16-ую с.с.
Решение: Действуем строго по алгоритму перевода целых чисел из 10-ой с.с. в любую другую:

Во втором примере процесс можно продолжать бесконечно. В этом случае деление продолжаем до тех пор, пока не получим нужную точность представления. Записываем числа сверху вниз.

Ответ: 0,6562510 = 0,А816; 0,910 = 1,1110012 с точностью до семи значащих цифр после запятой.

4. Переведём число 124,2610 в шестнадцатеричную с.с.
Решение: Действуем строго по алгоритму перевода произвольных чисел:

Переводим целую и дробную часть:

Записываем полученные числа справа налево (в целой части) и сверху вниз (в дробной части).
Ответ: 124,2610 = 7С,428А16

5. Переведём число: 11001010011010101112 в шестнадцатеричную систему счисления

Решение: Действуем строго по алгоритму перевода чисел из 2-ой с.с в с.с. с основанием 2 n :

Разбиваем число на группы по четыре цифры – тетрады (т.к. q=16, 16 = 2 n , n = 4) слева направо и, пользуясь таблицей, записываем соответствующее шестнадцатеричное число (слева дополняем 0-ми недостающие разряды)

Источник

Оцените статью
Разные способы