Что такое решить уравнение аналитическим способом

Аналитические методы решения линейных уравнений с параметрами.
консультация по алгебре (11 класс) на тему

В работа рассмотрены различные подходы к решению линейных уравнений с параметрами.

Скачать:

Вложение Размер
parametry.docx 31.82 КБ

Предварительный просмотр:

Аналитические методы решения линейных уравнений с параметрами.

В работе рассмотрены различные подходы к решению линейных уравнений с параметрами. Данная тема необходима учащимся для первичного ознакомления с методами решения уравнений с параметрами, которая является опорным пунктом подготовки к ЕГЭ (решение заданий части «С5»).

  1. Понятие уравнений с параметрами.
  2. Различные виды и методы решений линейных уравнений с параметрами.
  3. Задания для самостоятельной работы.

Рассмотрим уравнения, в которых некоторые коэффициенты заданы не конкретными числами, а обозначены буквами. Такие уравнения называются уравнениями с параметрами, а буквы – параметрами. Предполагается, что эти параметры могут принимать любые числовые значения.

Решить уравнение с параметрами – значит, найти множество всех корней данного уравнения в зависимости от допустимого значения параметра. (Т.е. указать, при каких значениях параметра существуют решения, и каковы они, затем исследовать его относительно параметра)

Алгоритм решения уравнений с параметрами примерно таков:

  • Разбить область изменения параметра на промежутки, где при изменении параметра в каждом из них полученные уравнения решаются одним и тем же методом.(Границами промежутков служат те значения параметра, в которых, или при переходе через которые, происходит качественное изменение уравнения. Такие значения параметра называют «особыми» или контрольными).
  • Отдельно на каждом промежутке находятся корни уравнения, выраженные через значения параметра.
  • Ответ уравнения состоит из списков изменения параметра с указанием всех корней для каждого промежутка (или конкретных значений параметра).

Основные методы решения уравнений с параметрами.

  1. Решение простейших линейных уравнений с параметрами.

Исследуем линейное уравнение вида: ax =b (1)

  1. а 0, b R, то уравнение (1) имеет единственный корень х= .
  2. а=0, b=0, уравнение (1) имеет корнем любое действительное число, т.е. х R.
  3. а 0, 0, уравнение (1) не имеет корней.

Пример №1: ax = 5; при a=0 имеем 0х=5, чего не может быть,

тогда х , при а 0 х= .

Пример №2: 0х=а; при а=0 получим 0х=0 х R, при а 0 х .

Пример №3 : Iхl=а, при а=0 х=0; при а>0 х= а, при а х .

Приведем уравнение к виду: х(а-1)=6;

если а=1, то 0х=6, нет решений;

Ответ: при а 1 х = ; при а=1 нет решений.

  1. Более сложные линейные уравнения с параметром, при решении которых требуется дополнительная проверка, связанная с ограничением на ОДЗ.

Алгоритм решения таких уравнений:

  1. Найти ОДЗ.
  2. Решить уравнение относительно х.
  3. Определить контрольные значения параметра (к.з.п.)
  4. Проверить, нет ли таких значений параметра, при которых значение х было бы равно числу, не входящему в ОДЗ.
  1. ОДЗ: х 2
  2. К.з.п. а=0.
  3. Решим уравнение относительно х:
  • При а=0 уравнение имеет вид =3. Уравнение корней не имеет.
  • При а 0 уравнение имеет вид а=3(х-2), отсюда х=
  1. Проверим, нет ли таких значений параметра а, при которых х=2, т.е. решим уравнение: =2, а=0 ( т.е. приа=0 нет решений)

Ответ: при а 0 х= ; при а=0 нет решений.

2. Решим уравнение относительно х. Умножим обе части уравнения на а 0: 2(а-1)х=(х-1)а +5;

2ах -2х – ах = 5 – а;

  1. К.з.п. а = 2, т.к. коэффициент при х обращается в 0 при а=2
  • Если а=2, то 0х=3, нет решений;
  • Если а 2, то х = .

Ответ: при а=2 нет решений; при а 2 и при а 0 х = ; при а=0 уравнение не имеет смысла.

Примечание. Если при каком-нибудь значении параметра а=а 0 данное уравнение не имеет смысла, то нет и решений при а=а 0. Обратное утверждение не верно. Бывает, что при контрольном значении параметра уравнение имеет корни, но они не входят в ОДЗ.

3.Уравнения, сводящиеся к линейным

Пример №1 Решить уравнение: m = +

  1. ОДЗ: т 0, х 1.
  2. Решим уравнение относительно х. Умножим обе части уравнения на т(х-1) 0, получим т 2 (х-1) = х – 1 + т – 1;

Х( т 2 – 1) = т 2 + т – 2;

  1. К.з.п. т= 1
  • Если т=1, то 0х=0, следовательно, х-любое действительное число, где х 1.
  • Если т=-1, то 0х=-2, нет решений.
  • Если т 1 и т то х= .
  • Если т = 0, то нет решений.
  1. Проверим, нет ли значений параметра а, при которых найденное значение х равно 1:

= 1, т+2=т+1, 0т=1, нет решений.

Ответ: при т=0 и т=-1 нет решений; при т=1 х (-∞;1) (1;+∞); при т 1 и

Пример №2 Решить уравнение: = .

2)Решим уравнение относительно х: (a+b)х = a – b.

3) К.з.п.: a+b = 0, a = -b.

  • Если a = -b, то нет решений.
  • Если a -b, то х = .
  1. Найдем значения параметров а и b, при которых полученное значение х=1:

1 = , 2b = 0, b = 0. Следовательно, при b = 0 нет решений.

Ответ: при a -b и b 0 х = ; при a = -b и b=0 нет решений.

Пример №3 (МГУ, 2002) При каких значениях параметра b уравнение

9х+ b 2 – (2 — )b — 2 = b 4 х – b 2 (b + ) не имеет корней?

  1. ОДЗ: х .
  2. Решим уравнение относительно х:

(b 4 – 9)х = b 3 + (1+ ) b 2 – (2 — )b -2 ,

Линейное уравнение не имеет корней тогда и только тогда, когда

Первое уравнение системы имеет два корня: b 1 = , b 2 = — .

  1. Подставим во второе уравнение системы b 1 = , получим: 2 +6 ;

b 2 = — , получим 0=0. Т.е. второму условию удовлетворяет b 1 = .

Ответ: при b= уравнение корней не имеет.

Решить самостоятельно уравнения

1) (а+5)(а-3)х=а 2 — 25 ( при а и а х= ; при а=3 ; при а=-5 х ∊ R)

2) а 2 х = а(х+2) – 2 ( при а и а х= ; при а=0 ∅ ; при а=1 х ∊ R)

3) = — ( при а=-3, а=-2, а=1/2 ∅ ; при а и а х= )

4)1+ = — ( при а и а х= ; при а=-3, а=0, а=1 ∅ )

5) Для каких значений а решение уравнения 10х-15а = 13- 5ах = 2а больше 2? (МГУ, 1982)

  • Г.А. Ястребинецкий. Уравнения и неравенства, содержащие параметры. М. Просвещение.1972.
  • А.Г. Корянов. Задачи с параметрами. Брянск.2010.
  • М.А. Галицкий, А.М.Гольдман, Л.И. Звавич. Сборник задач по алгебре для 8-9 классов. Углубленное изучение математики. М. Просвещение. 1992.

По теме: методические разработки, презентации и конспекты

Предлагаемый курс «Методы решения задач с параметром» предназначен для реализации в 10 классах для расширения теоретичес.

Решение задач с параметрами систематизирует знание основных разделов школьной математики, повышает уровень математического и логического мышления, формирует первоначальные навыки исследовательской дея.

Одними из наиболее сложных задач для учащихся в курсе математики — это задачи с параметрами, так как требуют от них умения рассуждать логически и анализировать полученные решения. С одной сторон.

урок в 11 классе.

Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, ч.

В действующем формате ЕГЭ по математике (профильный уровень) задания №18 содержат параметры и предполагают исследование свойств различных элементарных функций. Поэтому подготовку к и.

Данный материал предназначен для обучающихся 10-11 классов и содержит задания для подготовки к ЕГЭ по теме «Задание №18. Решение задач с параметром». Он направлен на совершенствование умений.

Источник

Аналитический способ решения квадратных уравнений с параметром

Конкурс на лучшую методическую разработку руководящих и

педагогических работников образовательных организаций, подведомственных

Управлению образованием Асбестовского городского округа,

в 2018-2019 учебном году

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №2»

Асбестовского городского округа

Технологическая карта конструкта урока по реализации ФГОС.

Тема работы: Аналитический способ решения квадратных уравнений с параметром.

Форма представления в очном этапе: мастер-класс.

Санникова Ксения Николаевна

I квалификационная категория

Асбестовский городской округ

2018-2019 учебный год

План проведения мероприятия_________________________________________________6-14

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры у школьников, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение или неравенство с параметрами представляет собой целый класс обычных уравнений и неравенств, для каждого из которых должно быть получено решение. Несмотря на то, что программа по математике средней общеобразовательной школы не упоминает в явном виде о задачах с параметрами, было бы ошибкой утверждать, что вопрос о решении задач с параметрами никоим образом не освещается в рамках школьного курса математики. О бучающиеся начинают знакомство с параметром с 7 класса, а именно при изучении линейных уравнений вида ax = b , далее 8 классе при изучении квадратных уравнений ax 2 + bx + c =0 , при решении тригонометрических уравнений в 10 классе и т.д. Также в школьных учебниках по математике в последнее время всё чаще стали появляться уравнения, неравенства и системы, содержащие параметр. К тому же подобные задачи включены в ОГЭ и ЕГЭ, а анализ предыдущих результатов показывает, что школьники с большим трудом решают задания с параметром, а многие даже не приступают к ним, либо приводят громоздкие и не верные вычисления.

Поэтому, считаю, что задачам с параметрами следовало бы уделять больше внимания. Они представляют математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков, требуют от учащихся умственных и волевых усилий, развитого внимания, воспитания таких качеств, как активность, творческая инициатива.

Цель урока (образовательные, развивающие, воспитательные): познакомить учащихся с аналитическим способом решения квадратных уравнений с параметром, вывести алгоритм решения квадратных уравнений с параметром аналитическим способом, развитие умения решать задачи данного типа, воспитание мотивов учения, положительного отношения к знаниям.

Знать алгоритм решения квадратных уравнений с параметром аналитическим способом;

Уметь решать задачи данного типа;

Личностные: находчивость, активность при решении математических задач; способность к эмоциональному восприятию;
УУД, которые актуализируют/приобретут/закрепят обучающиеся в ходе урока/занятия/ мероприятия:

Личностные УУД: мотивация к обучению и целенаправленной познавательной деятельности;

Регулятивные УУД: Целеполагание; планирование;

Коммуникативные УУД: планирование учебного сотрудничества с учителем и сверстниками;

Познавательные УУД: самостоятельное выделение и формулирование познавательной цели.

Возраст участников: 8 класс.

Условия проведения мероприятия: специальных условий не требуется.

Место: учебный кабинет.

Перечень оборудования и медиа-ресурсов: интерактивная доска, проектор, ноутбук.

Оформление: тема урока напечатанная на листе А4.

Источник

Решение линейных уравнений с параметром аналитическим и графическим способами (7-й класс)

Разделы: Математика

Класс: 7

Цель урока: научиться решать уравнения с параметром линейного вида.

    ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ.

Выполненные на отдельных листах упражнения из домашнего задания, вывешиваются перед уроком на специальной доске для самопроверки.

  • НАЧНЕМ УРОК С УСТНЫХ УПРАЖНЕНИЙ.
    1. Решите логическую задачу.

      На конференции 85% делегатов знают английский язык и 75 % испанский. Какая часть делегатов знают оба языка?

      (85% + 75%=160%, что на 60% превышает общее число делегатов конференции. За счет чего образовался излишек? За счет тех людей, которые оба языка знают, — их мы посчитали дважды. Таким образом, оба языка знают не менее 60 % делегатов конференции.)

      Найдите корни уравнения

      а) 1 + х = 2 – х, (0,5)

      б) 9х — 4 = 9х + 5, ( ø )

      в) 3х + 1 = 3х + 1. (х принадлежит R)

      При каких значениях b число 3 является корнем уравнения?

      Что значит решить уравнение с параметром? (Под решением уравнения f(x;a)=0

      с параметром а будем понимать систему значений х и а из области определения уравнения, обращающую его в верное числовое равенство)

      Решите уравнение с параметром:

      а) , (если m = 0 то x принадлежит R; если m <> 0, то решений нет)

      б) , (х = а/4)

      в) (если а = 0, то решений нет; если а не равен 0, то х = а/4).

    2. Назовите одно из решений уравнения .
    3. На крыльце дома сидят мальчик и девочка. Саша говорит:”Я – девочка”. Женя говорит: “Я – мальчик”. Если по крайней один из детей врет, то кто из них мальчик, а кто девочка? (Если один из детей врет, то врет и второй. Следовательно, Саша – мальчик, а Женя – девочка.)

    1. РЕШЕНИЕ ЗАДАЧ

    Сегодня мы посвятим урок решению задач с параметром аналитическим и графическим способами.

    №1. Решите уравнение:

    Если а не равно 0, преобразуем уравнение: а+х = а 2 + ах,

    (а — 1) х = — а (а — 1).

    а = 1, тогда

    х принадлежит R.

    3) Если а не равно 1, а <> 0, х = — а.

    Для удобства записи ответа сделаем рисунок решений

    Ответ: если а = 0, то решений нет, если а = 1, то х– любое число, если а? 0, а? 1, то х=- а.

    Дадим геометрическую интерпретацию уравнения

    Работа с графиком:

    Назовите пары решения уравнения

    Например: а = 1, х = 2,

    № 2 Отцу 40 лет. Через сколько лет отец будет в два раза старше сына?

    Пусть сыну а лет. Пусть через х лет отец будет в два раза старше сына.

    х + 40 (лет) будет отцу, а + х (лет) будет сыну. Т.к. по условию задачи отец будет в два раза старше сына, то 40 + х = 2 (а + х),

    По смыслу задачи а >= 0, но 40 — 2 а >= 0, а значит а 0, x + 2 = a или х + 2 = — а,

    х = а — 2, х = — а — 2.

    Ответ: если a 0, то х1 = а — 2.

    2 способ. Графический

    Построим в одной системе координат графики функций у = | х + 2| и у = а.

    Если a > 0, то у = — х — 2, или у = х + 2,

    — х — 2 = а, х + 2 = а,

    х = — а — 2; х = а — 2.

    Ответ: еслиa 0, то х1 = а — 2.

    № 4 Самостоятельно с последующей проверкой на доске.

    При каком значении а уравнение имеет один корень?

    а) | х| + | х — а | = — 3,

    в) 2| х| + | х — 1| = а.

    а) | х| + | х — а | = — 3,

    Ответ: при любом а корней нет, т.к. сумма двух неотрицательных чисел есть число неотрицательное.

    б) | х| + | х — а | = 0,

    Ответ: при а = 0, единственный корень х = 0.

    в) 2 | х| + | х — 1 | = а.

    Это уравнение решить аналитически трудно. Попробуем решить его графически.

    Построим в одной системе координат графики функций: у = 2 | х| + | х — 1 | и у = а.

    Если х = 1,y = 2x+x- 1,

    Ответ: при а = 1 уравнение имеет единственный корень х = 0.

    № 749 (4) Повторение действий с многочленами. № 737 Текстовая задача.

    При каком значении а уравнение 3 | х — 1| + | х — 2| = а не имеет корней?

    Необязательное задание: найти натуральное число А, если известно, что из трех данных утверждений два верно, а одно – нет. 1) А + 7 – точный квадрат,

    2) последняя цифра А равна 1, 3) А — 8 – точный квадрат.

    Источник

    Читайте также:  4 способа черно белое
    Оцените статью
    Разные способы