Что такое решение задачи двумя способами

Что такое решение задачи двумя способами

СПОСОБЫ РЕШЕНИЯ ЗАДАЧ

Понятие “решение задачи” можно рассматривать с различных точек зрения: решение как результат, т.е. как ответ на вопрос, поставленный в задаче, и решение как процесс нахождения этого результата.

С точки зрения методики обучения решению задач на первый план выступает процесс нахождения результата, который в свою очередь, тоже можно рассматривать с различных точек зрения Во-первых, как способ нахождения результата и, во-вторых, как последовательность тех действий, который входят в тот или иной способ.

Восемь яблок разложили по 2 на несколько тарелок. Сколько понадобилось тарелок?

Учащиеся могут решить эту задачу, не имея никакого представления о делении и о записи этого действия, а только опираясь на свой жизненный опыт и владея счетом от 1 до 8. Для этого они отсчитывают 8 яблок, положат 2 на одну тарелку, затем 2 на другую и т.д. пока не разложат все. Посчитав количество тарелок, они ответят на поставленный вопрос. Такой способ и называется практическим или предметным. Его возможности ограничены, так как учащийся может выполнить предметные действия только с небольшим количеством предметов. Усвоив смысл действия деления и его запись, можно решить эту задачу уже не практическим, а арифметическим способом, записав равенство 8 : 2 = 4.

Для решения можно применить алгебраический способ, рассуждая при этом так: “Число тарелок неизвестно, обозначим их буквой Х. На каждой тарелке 2 яблока, значит число всех яблок — это 2х. Так как в условии известно, что число всех яблок 8, то можно записать уравнение 2х = 8 и решить его х = 8 : 2, х = 4”.

Задачи, в которых для ответа на вопрос нужно выполнить только одно действие, называются простыми. Если для ответа на вопрос задачи нужно выполнить два и более действий, то такие задачи называются составными. Составную задачу, так же как и простую можно решить, используя различные способы.

Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные щуки. Сколько щук поймал рыбак?

Обозначим каждую рыбу кругом. Нарисуем 10 кругов и обозначим

пойманных рыб: л — лещи, о — окуни.

Для ответа на вопрос задачи можно не выполнять арифметические действия, так как количество пойманных щук соответствует тем кругам, которые не обозначены (их З).

1) 3 + 4 = 7 (р.) — пойманные рыбы

Для ответа на вопрос задачи мы выполнили два действия.

Пусть х — пойманные щуки

Тогда количество всех рыб можно записать выражением:

3 + 4 + х — все рыбы

По условию задачи известно, что рыбак поймал всего 10 рыб.

Значит 3 + 4 + х = 10

Решив это уравнение, мы ответим на вопрос задачи.

Этот способ, так же как и практический, позволяет ответить на вопрос задачи, не выполняя арифметических действий.

В начальных классах используются различные формы записи решения задач по действиям, по действиям с пояснением, с вопросами, выражением.

У мальчика было 90 книг. 28 он поставил на первую полку, 12 на вторую. Остальные на третью. Сколько книг на третьей пилке?

а) решение по действиям

Ответ: 50 книг на третьей полке.

б) по действиям с пояснением

1) 28 + 12 = 40 (к.) на 1 и 2 полках вместе.

2) 90 — 10 = 50 (к.) на 3 полке.

1) Сколько книг на первой и второй полках вместе?

2) Сколько книг на третьей полке?

При записи решения задачи выражением можно вычислить его значение. Тогда запись решения задачи будет выглядеть так:

90 — (28 + 12) = 50 (к.)

Не следует путать такие понятие как: решение задачи различными способами (практический, арифметический графический, алгебраический), различные формы записи арифметического способа, решения задачи (по действиям, выражением по действиям с пояснением, с вопросами) и решение задачи различными арифметическими способами. В последнем случае речь идет о возможности установления различных связей между данными и искомым, а, с следовательно, о выборе других действий или другой их последовательности для ответа на вопрос задачи.

Читайте также:  У енота способ передвижения

Например, рассмотренную выше задачу можно решить другим арифметическим способом:

1) 90 — 28 = 62 (к.) на 2 и3 полках.

2) 62 — 12 = 50 (к.) на 3 полке.

В качестве арифметического способа можно рассматривать и такое решение данной задачи:

1) 90 — 12 = 78 (к.) на 2 и 3 полках.

2) 78 -28 = 50 (к.) на З полке.

В числе способов решения задач ложно назвать схематическое моделирование. В отличие от графического способа, который позволяет ответить на вопрос задачи, используя счет и присчитывание схема моделирует только связи и отношения между данными и искомыми. Эти отношения не всегда возможно, а порой даже нецелесообразно представлять в виде символической модели (выражение, равенство) Тем не менее моделирование текста задачи в виде схемы иногда позволяет ответить не вопрос задачи.

Когда из гаража выехало 18 машин, в нем осталось в 3 раза меньше, чем было. Сколько машин было в гараже?

Решение этой задачи арифметическим способом довольно сложно для ребенка. Но если использовать схему, то от нее легко перейти к записи арифметического действия. В этом случае запись решения будет иметь вид:

Ответ: 27 машин было в гараже

В альбоме для раскрашивания 48 листов. Часть альбома Коля раскрасил. Сколько листов осталось не раскрашенными, если Коля раскрасил в 2 раза больше, чем ему осталось?

Решение задачи можно оформить так:

48 : 3 = 16 (л.) Ответ: 16 листов

[../../../_private/navbar1.htm]

Источник

Различные способы решения задач и различные формы записи решения

Страницы работы

Содержание работы

С. Е. ЦАРЕВА. Различные способы решения задач и различные формы записи решения// Начальная школа, 1982. — №2. – с.39-41.

На одном из уроков математики во II клас­се ученик, получив задание “Реши задачу”, спросил: “Каким способом нужно решать: по действиям или выражением”. Учитель ответил: “По действиям”.

Этот диалог показал, что и учитель, и уче­ник принимают различные формы запи­си решения за различные способы ее решения. Посещение уроков, беседы с учителями и учащимися позволили нам сде­лать вывод, что эта ошибка довольно распро­странена. Смешение же названных понятий приводит к тому, что, когда требуется дей­ствительно решить задачу разными способами, учащиеся либо вовсе не понимают задания, либо понимают его с большим трудом. А это, в свою очередь, снижает обучающие и воспитывающие возможности такого важного вида работы над задачей, как решение задач раз­ными способами.

Поэтому мы считаем своевременным обра­тить внимание учителей на отличие понятий способа решения задачи и формы записи решения задачи.

Задача считается решенной различными спо­собами, если се решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью использования этих связей.

Рассмотрим, например, задачу № 522 из учебника математики для II класса: “Для уро­ков труда купили 4 катушки белых ниток, по 10 коп. за катушку, и 6 катушек черных ни­ток по такой же цене. Сколько денег уплатили за эти нитки?”

Эта задача может быть решена двумя ариф­метическими способами.

При первом из них, наиболее очевидном, первоначально определяют стоимость черных ниток: (10-4)-коп., затем стоимость белых ни­ток: (10-6) коп. и, наконец, стоимость всех ниток.

При втором способе замечаем, что цена 1 катушки белых ниток та же, что и черных, поэтому вначале можно узнать, сколько всего катушек ниток купили (6+4), а затем опре­делить стоимость всех этих ниток

Читайте также:  Что такое самозащита как способ защиты гражданских

Запись решения, для каждого способа может быть выполнена в нескольких формах. Пока­жем все эти формы для каждого способа ре­шения.

Запись решения по действиям с пла­ном.

1. Сколько стоят белые нитки? 10·4 = 40 (коп.)

2. Сколько стоят черные нитки? 10·6=60 (коп.)

3. Сколько денег уплатили за все эти нитки?

1. Сколько всего катушек с нитками купили?

2. Сколько денег уплатили за все эти нитки?

В настоящее время эта форма записи реше­ния задач в начальной школе практически не применяется. Однако мы считаем, что озна­комить с ней учащихся полезно и ее можно использовать на уроках математики, хотя и значительно реже, чем другие формы.

Рассмотрим другую форму записи решения той же задачи — это запись решения по дей­ствиям с пояснениями.

1. 10 · 4 =40 (коп) — стоимость белых ниток,

2. 10 ·6 = 60 (коп) — стоимость черных ни­ток.

3. 40+60=100 (коп.) — стоимость всех ни­ток.

4. 100 коп.= 1 руб.

1. 6+4 = 10 (шт.) — всего купили катушек ниток.

2. 10·10 = 100 (коп) — стоимость всех ниток.

3. 100 коп. = 1 руб.

Решение задачи можно также оформить по действиям без пояснений.

3. 40 + 60=100 (коп).

4. 100 коп. = 1 руб.

2. 10 · 10=100 (коп).

3. 100 коп.= 1 руб.

Ответ: все нитки стоят 1 руб.

Ответ: все нитки стоят 1 руб.

По задаче можно также составить выражение и найти его значение.

10 · 4+10 · 6=100 (коп)

Ответ: все нитки стоят 1 руб

Ответ: все нитки стоят 1 руб.

Запись решения в этой форме осуществляется учащимися в два этапа. Вначале составляется выражение, затем учащиеся находят его значение, после чего запись решения приобретает вид равенства, в левой части кото­рого записано выражение, составленное по задаче, а в правой части — его значение.

Ни в коем случае нельзя называть запись 10 · 4 + 10 · 6 = 100 выражением, так как это противоречит тому определению поня­тия выражения, которое положено в основу изучения этого понятия в школе. Математи­ческое выражение составляется из цифр, букв, знаков арифметических действий и скобок, но не содержит знаков математических отноше­ний: равенства, неравенства и др. Два мате­матических выражения, соединенные знаком равенства, образуют равенство.

Приведенная выше запись — это равенство, левая часть которого есть выражение, составленное по задаче (10 · 4 + 10 ··6), а правая часть — выражение, состоящее всего лишь из одного числа (100), являющегося значением предыдущего выражения.

При проверке решения задачи, записанной в этой форме, учащимся можно дать такие задания:

1. Прочитайте выражение, составленное по задаче.

При выполнении этого задания учащиеся должны прочитать только левую часть равен­ства. (Сумма двух произведений 10·4 и 10·6.) После чтения выражения можно задать вопро­сы, ответы на которые покажут, как учащие­ся понимают смысл каждой части выражения (10 — 4 и 10 — 6) и всего выражения в целом (10 · 4 +10 · 6): что означает произведение деся­ти и четырех? десяти и шести? что означает сумма этих произведений?

2. Назовите значение этого выражения. (Значение составленного по задаче выражения равно 100.)

3. Дайте ответ на вопрос задачи. (Все нитки стоят 100 коп., т. е. 1 руб.)

При решении задач следует правильно употреблять в своей речи соответствующие термины: Решите задачу и запишите решение по действиям с пояснениями. Решите задачу двумя способами, записав каждое решение в виде равенства, левая часть которого — выражение, составленное по задаче. Решите задачу двумя способами. Составьте соответствующие выражения и найдите их значения. Решите задачу и запишите решение вначале по действиям с пояснениями, а затем в виде выражения. Найдите значение этого выражения. Дайте ответ на вопрос задачи.

Источник

Читайте также:  Способы выполнения текущего ремонта

Урок по математике «Решение задач разными способами»

Тема “Решение задач разными способами”

Вид: закрепление умения решать задачи на основе расширения способа действия.

Цели:

  • научить решать задачи арифметическим и алгебраическим способом;
  • научить решать усложненные уравнения.

Ход урока

1. Орг. момент.

Эмоционально-психологический настрой на урок. (Цель: создать эмоционально-психологический контроль)

Мне вспомнилась одна пословица “Корень ученья горек, да плод его сладок”. Как вы понимаете эту пословицу?

Она очень подходит к нашему уроку и вы это поймете.

2. Сообщение темы и цели урока.

— Тема нашего урока “Решение задач разными способами”

— Запишите число и тему урока.

3. Актуализация знаний.

— Мы с вами уже решали очень много самых разных задач, а сегодня я предлагаю вам решить необычные задачи, а задачи в которых есть буквенное значение.

(Дети записывают решение в тетради.)

  1. В зале занято 6 рядов по в мест. Сколько мест занято?
  2. А сколько свободных мест, если в зале а мест?
  3. Длина прямоугольника 8 см. Найдите периметр квадрата.
    — Можно решить эту задачу? (Эта задача требует пояснения при решении. Если прямоугольник является квадратом, то задача имеет решение, а если нет, то задачу решить нельзя)
  4. Скоро Новый Год и я предлагаю вам задание составить задачу с такими данными.Масса подарка 800 граммов.

4. Решение задачи.

Для ремонта школы привезли в одинаковых банках 90 кг зеленой краски и 180 кг белой краски. Зеленой краски было 18 банок. Сколько купили банок с белой краской?

Работа над задачей идет по плану:

  • 1 этап – восприятие задачи.
  • 2 этап – поиск плана решения (прикидка ответа)
  • 3 этап – выполнение плана.
  • 4 этап – проверка (сравнить с прикидкой)

1 способ.

1) 90 : 18 = 5 (кг) – в 1 банке.

2 способ.

1) 180 : 90 = 2 (раза) – во сколько раз за белую краску заплатили больше, чем за зеленую.

2) 18 х 2 = 36 (банок.)

— Ребята, что обозначает часть или целое число 90? 18? 180?

— Где мы еще с вами можем встретить часть и целое? (В уравнении)

5. Физминутка.

Если неизвестное число находится сложением – приседаете,

Вычитанием – руки вверх,

Делением – руки вперед.

А – 7 = 18 35 : а = 7 а + 6 = 10
30 – а = 13 а : 12 = 5 а х 4 = 24

— Назовите уравнения, где а – целое.

Решите уравнения второго столбика (по вариантам)

— Ребята, а что такое уравнение?

— А попробуйте теперь решить в паре такое уравнение:

6. Расширение способа действия.

— Мы с вами решали задачу двумя способами. Это были арифметические способы решения. А давайте попробуем решить эту задачу еще одним способом – с помощью уравнения.

— Что мы возьмем за х?

— Вы уже говорили, что уравнение это равенство. Какая величина в нашей задаче равна, одинаковая?

— Исходя из этих данных составьте в группах уравнение по этой задаче. (180 : х = 90 : 18)

— Молодцы! Это алгебраический способ решения задачи.

7. РРО.

— Мы с вами уже решали задачи разными способами, а сейчас попробуйте записать решение задачи в виде уравнения.

Уровень 1.

Реши задачу, составив уравнение.

На крыше сидело 7 голубей. Когда к ним прилетело еще несколько, их стало 15. Сколько голубей прилетело?

Уровень 2.

Реши задачу, составив уравнение.

В 7 одинаковых коробках 21 кг винограда. Сколько килограммов винограда в 4 таких же коробках?

8. Итог урока.

— Разрешите закончить наш урок, задав вам несколько вопросов.

— С чем мы сегодня познакомились на уроке?

Чему вы научились?

9. Домашнее задание.

1 уровень. Найдите в учебнике задачи, которые можно решить уравнением.

2 уровень. Составьте 2 задачи, которые можно решить уравнением – простым и усложненным.

Источник

Оцените статью
Разные способы